首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoisomerization of 3,3'-diethyloxadicarbocyanine iodide (DODCI) has been investigated in water, 5% and 30% aqueous triblock copolymer, poly(ethylene oxide)20-poly(propylene oxide)70-poly(ethylene oxide)20 (P123) by measuring the fluorescence quantum yields and lifetimes in the temperature range 293-318 K. Reports available in literature indicate that 5% aqueous P123 exists as micellar solution, whereas 30% aqueous P123 forms gel due to micelle-micelle entanglement. This study has been undertaken to find out how the polyene photoisomerization rates are influenced in the sol and gel phases. It has been observed that 60%-70% of DODCI is located in the palisade layer of the micelles in the sol as well as gel phases and the photoisomerization rate of this component is identical in both the phases at a particular temperature. The remainder of the probe is located in the interfacial region and isomerization rates of this fraction are slower by a factor of 1.4-1.1 in the gel phase compared with the micellar solution. The retardation of the isomerization rate in the gel phase has been explained on the basis of enhancement in the friction experienced by the probe due to micelle-micelle entanglement at the interface. Compared to the isomerization rates in water, the rates of photoisomerization of DODCI located in the palisade layer, interfacial region of micellar solution, and interfacial region of the micelles in the gel phase are slower by factors of 3.5, 1.5-1.9, and 2, respectively. The outcome of this study validates the point that in organized media photoisomerization rates are sensitive to the localized friction, which is not uniform unlike in a homogeneous solution.  相似文献   

2.
We described the use of block copolymer micelles as building blocks for the incorporation of water-insoluble photochromic species of azobenzene and the fabrication of multilayer films by alternating the deposition of the block copolymer micelles of poly(styrene-b-acrylic acid), incorporating azobenzene and poly(diallyl-dimethylammonium chloride). The azobenzene incorporated into the block copolymer micelles can undergo a reversible photoisomerization under the irradiation of UV and visible light sources. An interesting finding is that the photoisomerization of the azobenzene in the multilayer film is faster than it is in its normal solid film, but very similar to that in its diluted solution. Furthermore, the amount of azobenzene incorporated into the micelles can influence the photoisomerization rates in the films. Therefore, we expect that the block copolymer micelles may provide a proper microenvironment for the photoisomerization of azobenzene and the as-prepared polyelectrolyte/block copolymer micelle thin films will be useful for photoswitching materials.  相似文献   

3.
A series of amphiphilic temperature‐responsive star‐shaped poly(D,L‐lactic‐co‐glycolic acid)‐b‐methoxy poly(ethylene glycol) (PLGA‐mPEG) block copolymers with different arm numbers were synthesized via the arm‐first method. Gel permeation chromatography data confirmed that star‐shaped PLGA‐mPEG copolymers had narrow polydispersity index, indicating the successful formation of star‐shaped block copolymers. Indirectly, the 1H NMR spectra in two kinds of solvents and dye solubilization method had confirmed the formation of core‐shell micelles. Further, core‐shell micelles with sizes of about 30–50 nm were directly observed by transmission electron microscopy. Subsequently, the micellar sizes and distributions as a function of concentrations and temperature were measured. At various copolymer concentrations, individual micelles with size of 20–40 nm and grouped micelles with size of 600–700 nm were found. Micellar mechanism of star‐shaped block copolymers in aqueous solution was simultaneously discussed. In addition, sol–gel transition of star‐shaped block copolymers in water was also investigated via the inverting test method. The critical gel temperature (CGT) and critical gel concentration (CGC) values of two‐arm, three‐arm and four‐arm copolymer solutions were markedly higher than ones of one‐arm copolymer. Moreover, the same CGC values of copolymer solution with different molecular weight and the same arm composition were ~15 wt %, and CGT values increased from ~38 to ~47°C with increasing arm numbers. Finally, the temperature‐dependent micellar packing gelation mechanism of star‐shaped block copolymer was schematically illustrated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The evolution of water structure during the gelation process is examined in aqueous solution of agarose using Raman spectroscopy of the O-H stretching band. The measurements have been performed at room temperature for different concentrations of agarose, which yields different dimensions of nanopores in the network of the created gel. Our results show that water confined in the gel pores exhibits evident changes in the local order of molecules in comparison with bulk water and water in the sol state. During the sol-gel transition the number of molecules that participate in the regular tetrahedral H-bond structure increases, and the effect is stronger for higher concentration of the biopolymer.  相似文献   

5.
Poly(ethylene glycol)‐b‐polycaprolactone (MPEG‐PCL) diblock copolymers were synthesized via a ring‐opening polymerization of ε‐CL monomers with MPEG as an initiator. Their solubilities and apparent critical micelle concentrations (CMC) in aqueous solution were investigated as well as the determination of the micellar hydrodynamic diameter using dynamic light scattering (DLS). As PCL block length increased, the solubility and CMC decreased while diameters of micelles increased. The gel–sol transition behaviors were investigated using a vial tilting method. Aqueous solutions of copolymers undergo a gel to sol transition with increase in temperature when their polymer concentrations are above a critical gel concentration (CGC). The CGC of the copolymers and gel–sol transition temperature are influenced by the PCL chain length. The tapping mode AFM was performed by imaging the freeze‐dried deposits from the copolymer solutions on mica to investigate a process from free chains to micelles and to gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3406–3417, 2006  相似文献   

6.
In this work, we performed Monte Carlo simulations on a lattice model for spontaneous amphiphilic aggregation, in order to study the orientational and hydrogen-bonding dynamics of water on different regions inside the micellar solution. We employed an associating lattice gas model that mimics the aqueous solvent, which presents a rich phase diagram with first- and second-order transition lines. Even though this is a simplified model, it makes possible to investigate the orientational dynamics of water in an equilibrium solution of amphiphiles, as well as the influence of the different phases of the solvent in the interfacial and bulk water dynamics. By means of extensive simulations, we showed that, at high temperatures, the behavior of the orientational relaxation and hydrogen bonding of water molecules in the bulk, first, and second hydration shells are considerable different. We observe the appearance of a very slow component for water molecules in the first hydration shell of micelles when the system reaches a high-density phase, consistent with previous theoretical and experimental studies concerning biological water. Also, at high temperatures, we find that water molecules in the second hydration shell of micelles have an orientational decay similar to that of bulk water, but with a generally slower dynamics. Otherwise, at low temperatures, we have two components for the orientational relaxation of bulk water in the low density liquid phase, and only a single component in the high density liquid (HDL) phase, which reflect the symmetry properties of the different phases of the solvent model. In the very dense region of water molecules in the first hydration shell of micelles at low temperatures, we find two components for the orientational relaxation on both liquid phases, one of them much slower than that in the single component of bulk water in the HDL phase. This happens even though our model does not present any hindrance to the water rotational freedom caused by the presence of the amphiphiles.  相似文献   

7.
In this paper, we analyze the use of electrical impedance spectroscopy (EIS) to investigate the aggregational processes of low molecular weight polyethylene-b-polyethylene oxide copolymer (PE-b-PEO (50% PEO)) induced by concentration. The real and imaginary part of impedance have been compared to theoretical results based on equivalent circuits, providing information pertaining to the properties of the bulk and contributions due to the interactions at the electrolyte/electrode interface. The bulk resistance is used as a convenient tool for identifying structures such as spheres (S), hexagonally packed cylinders (HPC) and lamellar phases. To characterize the transition mechanisms involved in micellization we applied the Phillips criteria, associating the maximum change in the gradient of bulk resistance with the formation of micelles. The transition from micelles to HPC structures is characterized from the minimum in the bulk resistance, while the electrical signature relative to the formation of lamellar structures is characterized by the decrease in the diffusion (reduction in the polarization effects) and the inversion in the slope of bulk resistance as a function of copolymer concentration. Thus, the EIS may be defined as a convenient tool for characterizing the conformation and phase transitions in amphiphilic block copolymers.  相似文献   

8.
In an attempt to understand the role of interfacial friction on solute rotation, fluorescence anisotropy decays of a cationic solute, rhodamine 110, have been measured in polymorphic environments of a triblock copolymer, (PEO)20-(PPO)70-(PEO)20 (P123) (PEO = poly(ethylene oxide), PPO = poly(propylene oxide)). It has been noticed that even though rhodamine 110 is located in the interfacial region of the micelles, sol-gel transition does not significantly influence its rotation. Micelle-micelle entanglement, which is responsible for gelation, persists even in the micellar solution phase, perhaps to a lesser degree, and this entanglement is responsible for the observed behavior. This hypothesis has been substantiated by undertaking concentration-dependent studies in which it is shown that the reorientation time of the solute increases with an increase in the micellar concentration. In the case of reverse micelles, it has been observed that an enhancement in the water content facilitates solute rotation, which has been rationalized on the basis of solute migration from the hydrated poly(ethylene oxide) region to the poly(ethylene oxide)-water interface within the core.  相似文献   

9.
The interior water pool of aerosol OT (AOT) reverse micelles tends toward bulk water properties as the micelle size increases. Thus, deviations from bulk water behavior in large reverse micelles are less expected than in small reverse micelles. Probing the interior water pool of AOT reverse micelles with a highly charged decavanadate (V(10)) oligomer using (51)V NMR spectroscopy shows distinct changes in solute environment. For example, when an acidic stock solution of protonated V(10) is placed in a reverse micelle, the (51)V chemical shifts show that the V(10) is deprotonated consistent with a decreased proton concentration in the intramicellar water pool. Results indicate that a proton gradient exists inside the reverse micelles, leaving the interior neutral while the interfacial region is acidic.  相似文献   

10.
Microphase separated epoxy-based materials modified with an amphiphilic poly(styrene-block-ethylene oxide) diblock copolymer (PS-b-PEO) with low amount of PEO-block as well as ternary systems modified with this block copolymer and containing via sol–gel in situ synthesized TiO2 nanoparticles were prepared and characterized. The obtained results indicate that block copolymer had enough amount of PEO-block in order to achieve microphase separated materials for a high range of PS-b-PEO contents, morphologies changing from spherical micelles to long wormlike micelles passing through vesicles upon increasing copolymer amounts. In the case of 20 wt.% inorganic/organic epoxy-based materials, addition of synthesized TiO2 nanoparticles into PS-b-PEO-(DGEBA/MCDEA) system led to location of the nanoparticles in PEO-block/epoxy-rich confined between two microphase separated PS-block-rich phases. Designed highly transparent multiphase inorganic/organic epoxy-based materials possess interesting specific properties such as high UV shielding efficiency and high water repellence.  相似文献   

11.
Two types of temperature‐sensitive biodegradable three‐arm and four‐arm star‐shaped poly(DL ‐lactic acid‐co‐glycolic acid‐b‐ethylene glycol) (3‐arm and 4‐arm PLGA–PEG) were successfully synthesized via the coupling reaction of 3‐arm and 4‐arm PLGA and α‐monocarboxyl‐ω‐monomethoxypoly(ethylene glycol) (CMPEG). In dilute aqueous solutions, star PLGA–PEGs showed the temperature‐ and concentration‐dependent formation and aggregation of micelles over specific concentration and specific temperature. With increasing the molecular weight and the relative hydrophobicity of hydrophobic PLGA block, critical micelle temperature (CMT) decreased. Aqueous solution of 4‐arm PLGA–PEG started to form micelles at lower temperature and showed sharper temperature‐dependent growth in micelle size. These results are due to the enhanced hydrophobicity of PLGA block. On the other hand, at high concentration, two types of 3‐arm and 4‐arm PLGA–PEG showed sol–gel–sol transition behavior as the temperature was increased. The 3‐arm and 4‐arm PLGA–PEG showed sol–gel transition at higher polymer concentrations (above 24 wt %) than the PEG–PLGA–PEG triblock copolymer. As the molecular weight and the relative hydrophobicity of PLGA block increased, the critical gel concentration (CGC) decreased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 888–899, 2006  相似文献   

12.
The sol-gel transition of methylcellulose (MC) solution in the presence of NaCl and hexade-cyltrimethylammonium bromide (HTAB), together with MC/NaCl solution in the presence of HTAB and MC/HATB solution in the presence of NaCl, was investigated by the rheolog-ical measurements. It has been found that the sol-gel transition temperature of MC solution decreases linearly with the concentration of NaCl in solution but increases linearly with the concentration of HTAB in solution, respectively. However, the sol-gel transition temperature of MC/NaCl solution in the presence of HTAB keeps the same value, independent of theconcentration of HTAB in solution. On the other hand, the sol-gel transition temperature of MC/HTAB solution decreases linearly with the concentration of NaCl in solution. The experimental results suggest that, for MC/NaCl solution in the presence of HTAB, the salt-induced spherical micelles of HTAB should have formed in bulk solution. For MC solution in the absence of NaCl, no spherical micelles have been formed in bulk solution, though the concentration of HTAB in our experiment is almost one order of magnitude higher than the critical micelle concentration of HTAB in polymer-free solution. In fact, due to adsorption of HTAB on MC chains, the realconcentration of HTAB in bulk solution, is much less than the apparent concentration of HTAB dissolved in MC solution.  相似文献   

13.
In this paper, we describe the use of block copolymer micelles to incorporate Azo-AOT, an azobenzene-containing amphiphile having a structure suitable for reverse micelle formation and the fabrication of polyelectrolyte/micelle multilayer films. Interestingly, it is found that the PS21-PAA157 micelles can incorporate more Azo-AOT molecules than the PS115-PAA15 micelles, which is different from the case of incorporation of noncharged hydrophobic molecules. Moreover, Azo-AOT incorporated into the PS21-PAA157 micelles undergoes a faster photoisomerization than in the PS115-PAA15 micelles, which seems to be related to different aggregation states of Azo-AOT in the two micelles. From the data of UV-vis spectra, we can infer that Azo-AOT adopts a reverse micelle-like aggregation state in the PS115-PAA15 micelles and disperses in the interface between the core and corona of PS21-PAA157 micelles. These polyelectrolyte/micelle films incorporating functional amphiphiles have great potential in the field of functional thin films.  相似文献   

14.
Effects of constituent block size of triblock copolymers on the nature of the water molecules in the corona region of their micelles have been investigated using time-resolved fluorescence measurements. The physical nature of the water molecules in the micellar corona region of the block copolymer, Pluronic F88 ([ethylene oxide (EO)]103-[propylene oxide (PO)]39-EO103), has been studied using a solubilized coumarin dye. Solvent reorientation time and rotational correlation time have been measured and compared with another block copolymer, Pluronic P123 (EO20-PO70-EO20), which has a different composition of the constituent PO and EO blocks. It is noted that due to the presence of larger number of EO blocks in F88 as compared with P123, the corona region of the former micelle is more hydrated than that of the latter. The solvent reorientation time and rotational correlation time are found to be relatively shorter for F88 as compared with P123. This indicates that the water molecules in the corona of the F88 micelle are more labile than those of P123, which is also supported from the estimated number of water molecules associated with each EO unit, measured from the size of each type of micelle and its aggregation number. To understand the effect of block size on the chemical reactions in these microheterogeneous media, electron transfer reactions have been carried out between different coumarin acceptors and N, N-dimethylaniline donor. The electron transfer results obtained in F88 micelles have been compared with those obtained in P123, and the results are rationalized on the basis of the relative hydration of the two triblock copolymer micelles.  相似文献   

15.
The formation of silica is governed by two parallel processes triggered by the addition of a precursor to a solution of P123 block copolymer. One process is sol–gel synthesis, while the other is the transformation of an initial micellar phase consisting of spherical micelles of P123 into a hexagonal mesophase, which serves as a template. The gelation of the reaction mixture terminates all transformations, thus making it possible to examine the phase state of the block copolymer at the moment of the sol–gel transition. The systematic study of systems with different P123 concentrations has shown that the structure, morphology, and porosity of the material is determined by the ratio between the rates of the aforementioned processes. A material with the structure of SBA-15 containing hexagonally packed cylindrical mesopores is formed at a block copolymer content of 10 wt %. As the P123 concentration is reduced, the rate of the transformations of its structures decreases relative to the rate of the sol–gel process. Analysis of electron micrographs has revealed that the material being formed contains, initially, irregular short rodlike mesopores rather than cylindrical ones; then, as the P123 concentration is further decreased, amorphous silica arises in the material. The role of their templates is played by intermediate structures formed during the transformation of the P123 micellar phase into the hexagonal mesophase. Advantages of the SBA-15 synthesis with the precurosr containing ethylene glycol residues are the good reproducibility, one-pot procedure, no addition of acid and organic solvent or heating, and the formation of bimodal monolithic material containing both meso- and macropores.  相似文献   

16.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

17.
MPEG–PCL diblock copolymers consisting of methoxy polyethylene glycol (MPEG, 750 g/mol) and poly(?‐caprolactone) (PCL) were synthesized by ring‐opening polymerization. Aqueous solutions of the synthesized diblock copolymers were prepared by dissolving the MPEG–PCL diblock copolymers at concentrations in the range of 0–20 wt %. When the PCL molecular weight was 3000 or greater, the polymer was only partially soluble in water. As the temperature was increased from room temperature, the diblock copolymer solutions showed two phase transitions: a sol‐to‐gel transition and a gel‐to‐sol transition. The sol‐to‐gel phase transition temperature decreased substantially with increasing PCL length. The sol–gel–sol transition with the increase in temperature was confirmed by monitoring the viscosity as a function of temperature. The temperature ranges of the phase transitions measured by the tilting method were in full agreement with those determined from the viscosity measurements. The maximum viscosity of the copolymer solution increased with increasing hydrophobicity of the diblock copolymer and with increasing copolymer concentration. X‐ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses revealed that the diblock copolymers exhibited crystalline domains that favored the formation of an aggregated gel because of the tight aggregation and strong packing interactions between PCL blocks. Scanning electron micrographs of the diblock copolymer solutions in the sol state showed interconnected polyhedral pore structures, whereas those of the gel state revealed a fibrillar‐like morphology. Atomic force microscope (AFM) studies of the sol and gel surfaces showed that the sol surface was covered with fine globular particles, whereas the gel surface was covered with particles in micron‐scale irregular islets. These findings are consistent with uniform mixing of the diblock copolymer and water in the sol state, and aggregation of PCL blocks in the gel state. In conclusion, we confirm that the MPEG–PCL diblock copolymer solution exhibited a sol–gel–sol transition as a function of temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5413–5423, 2006  相似文献   

18.
The surface activity and the rheological properties of aqueous solutions of the amphiphilic block copolymer poly(n-butyl acrylate)-block-poly(acrylic acid) (PnBA-b-PAA) were studied as a function of the degree of neutralization, alpha, of the poly(acrylic acid) block. Although the block copolymer spontaneously forms spherical micelles having a stretched PAA corona and a collapsed PnBA core in water for alpha > 0.1, the solutions do not exhibit any surface activity at this degree of neutralization. Cryo-TEM micrographs show that the radii of the hydrophobic core of the largest micelles are as long as the length of the hydrophobic chain. The micelles, however, have a broad size distribution, and on average, as shown by SANS, the micelles are only about half as long. At concentrations as low as 1 wt %, the solutions exhibit highly viscoelastic behavior and have a yield stress value depending on alpha. The globular micelles are highly ordered in the bulk phase, and the viscoelastic properties are a result of the dense packing of the micelles. The addition of salt or cationic surfactants dramatically decreases the viscosity of the solution. The observed properties seem to be due to electrostatic interactions between the PAA chains of the micelles.  相似文献   

19.
In an attempt to understand the nature of water present in the reverse phases of aggregates formed with the triblock copolymer poly(ethylene oxide)(20)-poly(propylene oxide)(70)-poly(ethylene oxide)(20) (P123) and also investigate how these confined environments influence the rates of photoisomerization, fluorescence lifetimes and quantum yields of a carbocyanine derivative--3,3'-diethyloxadicarbocyanine iodide (DODCI)--were measured in these systems over the temperature range of 293-318 K. Three different copolymer-oil-water compositions were chosen such that the mole ratio of water to copolymer (W) spans the range of 50-150. In these systems, butyl acetate was used as the oil or the nonpolar component. It has been noticed that in all three systems the fluorescence decays of DODCI comprise a long component whose contribution is 85-90%, and this has been ascribed to the fraction of solute solubilized in the core region where hydrated poly(ethylene oxide) units are present. A short-decay component is associated with the remaining fraction, and its values match with those measured in water, indicating that the water present in these reverse phases is in the form of droplets. The photoisomerization rate constants of DODCI located in the core regions of the reverse phases are identical in the three systems at a given temperature and similar to the ones obtained in normal phases of P123. The reasons for the observed behavior have been discussed.  相似文献   

20.
The solution, gelation, and morphological properties of monodisperse aromatic polyamide diblock copolymers consisting of poly(p‐benzamide) (PpBA), poly(m‐benzamide) (PmBA), and poly(N‐octyl m‐benzamide) (POmBA) were investigated. The block copolymers of these polymers, PpBA‐block‐POmBA and PmBA‐block‐POmBA, formed spherical micelles or amorphous aggregates in many solvents in addition to physical gels at concentrations higher than 5 wt %. A temperature‐induced sol‐gel transition was also exhibited for PpBA‐block‐POmBA in solvents with high boiling points such as N,N‐dimethylacetamide and N‐methylpyrrolidone (NMP), although the transition was not entirely thermoreversible; the transition temperature decreased by annealing at ~80 °C. Dynamic light scattering measurements of the PpBA‐block‐POmBA/NMP solutions revealed that metastable micelles in the sol state reorganized into smaller micelles upon annealing at 90 °C. The block copolymer, which forms strong associations, exhibited some transient structure as indicated by the need to sufficiently anneal the solution to reach equilibrium. Network‐like patterns with characteristic length of ~10 μm appeared on the gel surfaces upon evaporation of volatile solvents such as dichloromethane and chloroform, in which the copolymers were observed to aggregate. The unique properties of the copolymers originate from interactions between the highly polar N? H aromatic polyamide blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1732–1739, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号