首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this article, the stability analysis, chaos control and the function projective synchronization between fractional order identical satellite systems have been studied. Based on the stability theory of fractional order systems, the conditions of local stability of nonlinear three-dimensional commensurate and incommensurate fractional order systems are discussed. Feedback control method is used to control the chaos in the considered fractional order satellite system. Using the fractional calculus theory and computer simulation, it is found that the chaotic behavior exists in the fractional order satellite system and the lowest order of derivative where the chaos exits is 2.82. Adams-Bashforth-Moulton method is applied during numerical simulations and the results obtain are displayed through graphs.  相似文献   

2.
Nowadays, fractional calculus are used to model various different phenomena in nature, but due to the non-local property of the fractional derivative, it still remains a lot of improvements in the present numerical approaches. In this paper, some new numerical approaches based on piecewise interpolation for fractional calculus, and some new improved approaches based on the Simpson method for the fractional differential equations are proposed. We use higher order piecewise interpolation polynomial to approximate the fractional integral and fractional derivatives, and use the Simpson method to design a higher order algorithm for the fractional differential equations. Error analyses and stability analyses are also given, and the numerical results show that these constructed numerical approaches are efficient.  相似文献   

3.
Xiaoyun Jiang  Mingyu Xu 《Physica A》2010,389(17):3368-3374
In this paper a time fractional Fourier law is obtained from fractional calculus. According to the fractional Fourier law, a fractional heat conduction equation with a time fractional derivative in the general orthogonal curvilinear coordinate system is built. The fractional heat conduction equations in other orthogonal coordinate systems are readily obtainable as special cases. In addition, we obtain the solution of the fractional heat conduction equation in the cylindrical coordinate system in terms of the generalized H-function using integral transformation methods. The fractional heat conduction equation in the case 0<α≤1 interpolates the standard heat conduction equation (α=1) and the Localized heat conduction equation (α→0). Finally, numerical results are presented graphically for various values of order of fractional derivative.  相似文献   

4.
The article aims to study the reduced-order anti-synchronization between projections of fractional order hyperchaotic and chaotic systems using active control method. The technique is successfully applied for the pair of systems viz., fractional order hyperchaotic Lorenz system and fractional order chaotic Genesio-Tesi system. The sufficient conditions for achieving anti-synchronization between these two systems are derived via the Laplace transformation theory. The fractional derivative is described in Caputo sense. Applying the fractional calculus theory and computer simulation technique, it is found that hyperchaos and chaos exists in the fractional order Lorenz system and fractional order Genesio-Tesi system with order less than 4 and 3 respectively. The lowest fractional orders of hyperchaotic Lorenz system and chaotic Genesio-Tesi system are 3.92 and 2.79 respectively. Numerical simulation results which are carried out using Adams-Bashforth-Moulton method, shows that the method is reliable and effective for reduced order anti-synchronization.  相似文献   

5.
This paper concerns the abstract nonlocal Cauchy problem of a class of fractional evolution equations with Caputo derivative. A suitable mild solution of evolution equations with Caputo derivative is introduced. In the cases C 0 semigroup is compact or noncompact, the existence theorems of mild solutions for the nonlocal Cauchy problem are established by means of fractional calculus, theory of Hausdorff measure of noncompactness and fixed point theorems.  相似文献   

6.
The time fractional diffusion-wave equation is obtained from the classical diffusion or wave equation by replacing the first- or second-order time derivative by a fractional derivative of order 2β with 0<β≤1/2 or 1/2<β≤1, respectively. Using the method of the Laplace transform, it is shown that the fundamental solutions of the basic Cauchy and signalling problems can be expressed in terms of an auxiliary function M (z; β), where z is the similarity variable. Such function, which reduces to the well-known Gaussian function for β=1/2 (ordinary diffusion), is proved to be an entire function of Wright type.  相似文献   

7.
Fractional partial differential equations are emerging in many scientific fields and their numerical solution is becoming a fundamental topic. In this paper we consider the Riesz fractional derivative operator and its discretization by fractional centered differences. The resulting matrix is studied, with an interesting result on a connection between the decay behavior of its entries and the short memory principle from fractional calculus. The Shift-and-Invert method is then applied to approximate the solution of the partial differential equation as the action of the matrix exponential on a suitable vector which mimics the given initial conditions. The numerical results confirm the good approximation quality and encourage the use of the proposed approach.  相似文献   

8.
The fractional complex transform is suggested to convert a fractional differential equation with Jumarie?s modification of Riemann-Liouville derivative into its classical differential partner. Understanding the fractional complex transform and the chain rule for fractional calculus are elucidated geometrically.  相似文献   

9.
Two model examples of the application of fractional calculus are considered. The Riemann–Liouville fractional derivative with 0 < α ≤ 1 was used. The solution of a fractional equation, which describes anomalous relaxation and diffusion in an isotropic fractal space, has been obtained in the form of the product of a Fox function by a Mittag-Leffler function. The solution is simpler than that given in Ref. 6 and it generalizes the result reported in Ref. 7. For the quantum case, a solution of the generalized Neumann–Kolmogorov fractional quantum-statistical equation has been obtained for an incomplete statistical operator which describes the random walk of a quantum spin particle, retarded in traps over a fractal space. The solution contains contributions from quantum Mittag-Leffler (nonharmonic) fractional oscillations, anomalous relaxation, noise fractional oscillations, and exponential fractional diffusion oscillation damping.  相似文献   

10.
The fact that the first variation of a variational functional must vanish along an extremizer is the base of most effective solution schemes to solve problems of the calculus of variations. We generalize the method to variational problems involving fractional order derivatives. First order splines are used as variations, for which fractional derivatives are known. The Grünwald-Letnikov definition of fractional derivative is used, because of its intrinsic discrete nature that leads to straightforward approximations.  相似文献   

11.
Within the framework of fractional calculus with variable order the evolution of space in the adiabatic limit is investigated. Based on the Caputo definition of a fractional derivative using the fractional quantum harmonic oscillator a model is presented, which describes space generation as a dynamic process, where the dimension d of space evolves smoothly with time in the range 0 ≤ d(t) ≤ 3, where the lower and upper boundaries of dimension are derived from first principles. It is demonstrated, that a minimum threshold for the space dimension is necessary to establish an interaction with external probe particles. A possible application in cosmology is suggested.  相似文献   

12.
Lv Longjin  Fu-Yao Ren  Wei-Yuan Qiu 《Physica A》2010,389(21):4809-1752
In this paper, in order to establish connection between fractional derivative and fractional Brownian motion (FBM), we first prove the validity of the fractional Taylor formula proposed by Guy Jumarie. Then, by using the properties of this Taylor formula, we derive a fractional Itô formula for H∈[1/2,1), which coincides in form with the one proposed by Duncan for some special cases, whose formula is based on the Wick Product. Lastly, we apply this fractional Itô formula to the option pricing problem when the underlying of the option contract is supposed to be driven by a geometric fractional Brownian motion. The case that the drift, volatility and risk-free interest rate are all dependent on t is also discussed.  相似文献   

13.
The purpose of this paper is twofold: from one side we provide a general survey to the viscoelastic models constructed via fractional calculus and from the other side we intend to analyze the basic fractional models as far as their creep, relaxation and viscosity properties are considered. The basic models are those that generalize via derivatives of fractional order the classical mechanical models characterized by two, three and four parameters, that we refer to as Kelvin–Voigt, Maxwell, Zener, anti–Zener and Burgers. For each fractional model we provide plots of the creep compliance, relaxation modulus and effective viscosity in non dimensional form in terms of a suitable time scale for different values of the order of fractional derivative. We also discuss the role of the order of fractional derivative in modifying the properties of the classical models.  相似文献   

14.
If the attenuation function of strain is expressed as a power law, the formalism of fractional calculus may be used to handle Eringen nonlocal elastic model. Aim of the present paper is to provide a mechanical interpretation to this nonlocal fractional elastic model by showing that it is equivalent to a discrete, point-spring model. A one-dimensional geometry is considered; the static, kinematic and constitutive equations are presented and the governing fractional differential equation highlighted. Two numerical procedures to solve the fractional equation are finally implemented and applied to study the strain field in a finite bar under given edge displacements.  相似文献   

15.
In this paper, we study sine-Gordon equation in order to obtain exact solitary wave solutions in the domain of fractional calculus. By using the definition of conformable fractional derivative, we obtain analytical solutions of time, space and time-space fractional sine-Gordon equations. We analyze graphically the effect of fractional order on evolution of the kink and antikink type solitons.  相似文献   

16.
In this paper, our principle aim is to establish a new extension of the Caputo fractional derivative operator involving the generalized hypergeometric type function F p (a, b; c; z; k), introduced by Lee et al. Some extensions of the generalized hypergeometric functions and their integral representations are also presented. Furthermore, linear and bilinear generating relations for the extended hypergeometric functions are obtained. We also present some properties of the extended fractional derivative operator.  相似文献   

17.
Marzio Marseguerra 《Physica A》2008,387(12):2668-2674
The motion of contaminant particles through complex environments such as fractured rocks or porous sediments is often characterized by anomalous diffusion: the spread of the transported quantity is found to grow sublinearly in time due to the presence of obstacles which hinder particle migration. The asymptotic behavior of these systems is usually well described by fractional diffusion, which provides an elegant and unified framework for modeling anomalous transport. We show that pre-asymptotic corrections to fractional diffusion might become relevant, depending on the microscopic dynamics of the particles. To incorporate these effects, we derive a modified transport equation and validate its effectiveness by a Monte Carlo simulation.  相似文献   

18.
Integer and fractional quantum Hall (QH) effects are studied in bilayer electron systems both theoretically and experimentally, especially, at ν=2 and 2/3. Due to the spin and layer degrees of freedom, the SU(4) symmetry underlies the integer QH states, where quantum coherence develops spontaneously and quasiparticles are coherent excitations. It is intriguing that a pair of skyrmions makes one quasiparticle at ν=2. In the fractional QH regime, on the other hand, the composite-fermion cyclotron gap competes with the Zeeman and tunneling gaps, bringing in new phases and excitations. At ν=2/3 our experimental data suggest that a quasiparticle is not a coherent excitation but simply a composite fermion.  相似文献   

19.
Using the generalized Kolmogorov-Feller equation with long-range interaction, we obtain kinetic equations with fractional derivatives with respect to coordinates. The method of successive approximations, with averaging with respect to a fast variable, is used. The main assumption is that the correlation function of probability densities of particles to make a step has a power-law dependence. As a result, we obtain a Fokker-Planck equation with fractional coordinate derivative of order 1<α<2.  相似文献   

20.
This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz’s notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie’s mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号