首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(9):1463-1475
Abstract

Etilefrine hydrochloride (EfCl) selective PVC membrane electrodes based on Etilefrinium phosphotungstate (I), Etilefrinium tetraphenylborate (II) and a mixture of both (III) were prepared, The electrodes exhibited near Nernstian response over the concentration ranges 5.0 × 10?6 - 1.0 × 10?1, 6.3 × 10?6 - 1.0 × 10?1 and 6.3 × 10?5 - 1.0 × 10?1 M EfCl for electrodes I, II and III, respectively. The working pH ranges of electrodes I, II and III were 10 - 8.0, 10 - 7.5 and 10 - 7.5 and their isothermal coefficients were 0.00150, 0.00088 and 0.00072 V/°C, respectively. The electrodes showed good selectivity to EfCl with respect to many inorganic cations, sugars and amino acids. The standard additions method was used to determine EfCl in pure solutions and in pharmaceutical preparations.  相似文献   

2.
A mercury(II) ion selective poly(aniline) solid contact electrode based on 2-mercaptobenzimidazol (2MBI) ionophore as a sulfur containing sensing material was successfully developed. The electrode exhibits a good linear response of 29.1 mV/decade (at 20 ± 0.2°C, r 2 = 0.997) within the concentration range of 1 × 10?2?1 × 10?7 M Hg(II). The composition of this electrode was: ionophore 0.100, polyvinylchloride (PVC) 0.330, dibutylphthalate (DBP) 0.470, potassiumtetrakis(4-chlorophenyl)borate (KTpCIPB) 0.090, and oleic acid (OA) 0.010. A poly(aniline) solid contact electrode based on 2MBI with DBP and OA plasticizers exhibited the best response characteristics of the results obtained for similarly coated wire type electrodes and solid contact electrodes based on only one DBP plasticizer. The electrode shows good selectivity for mercury(II) ions in comparison with alkali, alkaline earth, transition and heavy metal ions. This electrode is suitable for use with aqueous solutions of pH 3.3?C8.0 and the standard deviation in the measured EMF difference was ±0.5 mV in a mercury nitrate sample solution of 1.0 × 10?2 M and ±1.1 mV in a mercury nitrate sample solution of 1.0 × 10?3 M. The stabilization time was less than 15 min and the response time was less than 33 s. The electrode was applied as a sensor for the determination of Hg(II) content in a sea water sample and some amalgam alloys. The results show good correlation with data obtained by atomic absorption spectrometry.  相似文献   

3.
《Analytical letters》2012,45(8):1111-1118
Abstract

Three enantioselective, potentiometric electrodes were proposed for the enantioanalysis of butaclamol. The electrodes were based on immobilization of maltodextrins (MDs) of different dextrose equivalences [4.0–7.0, I; 13–17, II; 16.5–19.5, III] into carbon paste. The electrodes based on MD I and II were used for the enantioanalysis of S-butaclamol within linear concentration ranges of 10?10 to 10?7 and 10?10 to 10?8, respectively, with slopes of 51.20 and 57.59 mV/decade of concentration; whereas the electrode based on MD III was used for the enantioanalysis of R-butaclamol within a linear concentration range between 10?10 and 10?7 with a slope of 58.50 mV/decade of concentration. Recoveries greater than 90% were recorded for the enantioanalysis of butaclamol in synthetic and urine samples.  相似文献   

4.
This paper reports the use of an adsorptive voltammetric technique for Pb(II) determination using cupferron as a selective complexing agent. After accumulation of the complex onto a hanging mercury drop electrode, the electrode potential was scanned with differential pulse modulation and the reduction current of lead was observed at about??0.5?V. Under optimum conditions (5?×?10?4?mol?L?1 cupferron concentration, 0.1?mol?L?1 acetate buffer (pH 5.5), adsorption at??50?mV for 30?s) the detection limit was 5.1?×?10?10?mol?L?1. The relative standard deviation of five measurements for low lead concentration was 3.1%. The accuracy of the method was tested by analysing certified reference material (SPS-WW1 Waste Water). Finally, the method was successfully applied to the determination of Pb(II) in river water samples without any pretreatments.  相似文献   

5.
The construction and performance characteristics of new sensitive and selective in situ carbon paste (ICPE) and screen-printed (ISPE) potentiometric sensors modified with ion-pairing agents such as phosphotungstic acid, sodium tetraphenylborate, phosphomolybdic acid and ammonium reineckate for determination of econazole nitrate (ECN) have been developed. The reaction mechanism between ECN and ion-pairing agents at the electrode surface was studied through scanning electron microscope and energy-dispersive X-ray analysis. The electrodes under investigation showed potentiometric response for ECN in the concentration range from 1.0 × 10?6 to 5.0 × 10?3 mol L?1 and from 1.0 × 10?6 to 1.0 × 10?2 mol L?1 for ISPE (electrode I) and ICPE (electrode II) potentiometric sensors, respectively, at 25 °C. The electrode response was pH independent in the range 2.5–7.5 and 2.5–6.5 for electrodes I and II, respectively. These sensors have Nernstian slope values of 59.4 ± 0.2 and 59.10 ± 0.2 mV decade?1 with detection limit of 1.0 × 10?6 mol L?1 for electrodes I and II, respectively. The electrodes showed fast response time of 4 and 9 s for electrodes I and II, respectively. The ISPE (electrode I) showed lifetime of 28 days, and this was considered as advantage over ICPE (electrode II). Selectivity for ECN with respect to a number of interfering materials was also investigated. The proposed electrodes were applied for determination of ECN in pure and pharmaceutical formulation using calibration, potentiometric titration and standard addition methods. The results showed good agreement with those obtained using official method. The t and F values indicated no significant difference between the suggested and reported methods. Method validation parameters were optimized according to ICH recommendations.  相似文献   

6.
《Electroanalysis》2006,18(5):499-506
A new amperometric sensor for the determination of trichloroacetic acid (TCA) was developed based on the immobilization of myoglobin/colloidal gold nanoparticles in titania sol–gel matrix. The sensor showed a pair of well‐defined and nearly reversible cyclic voltammetric peaks for the Mb Fe(III)/Fe(II) with a formal potential (E°′) of ?335 mV and a peak‐to‐peak separation was 61 mV vs. Ag/AgCl (3.0 M KCl) at 100 mV s?1 in 0.1 M pH 7.0 phosphate buffer solutions (PBS). The formal potential of the Mb Fe(III)/Fe(II) couple shifted linearly with the pH with a slope of ?51.3 mV/pH, indicating that an electron transfer accompanies single‐proton transportation. The sensor displayed a good electrocatalytic response toward the reduction of TCA and the catalytic mechanism was also discussed. The overpotential for the reduction of TCA was lowered by at least 0.8 V compared with that obtained at bare glassy carbon electrode. The linear range spans the concentration of TCA from 2.0×10?6 to1.2×10?5 M and the detection limit was 1.2×10?7 M. In addition, the stability, repeatability and selectivity of the sensor were also evaluated.  相似文献   

7.
《Electroanalysis》2005,17(8):713-718
Five plastic membrane Pb2+‐selective electrodes were prepared based on 1,4‐bis(N‐tosyl‐o‐aminophenoxy)butane I , 1,4‐bis(N‐allyl‐N‐tosyl‐o‐aminophenoxy)butane II , 1,4‐bis(N‐benzyl‐N‐tosyl‐o‐aminophenoxy)butane III , 1,4‐bis[N‐(o‐allyloxybenzyl)‐N‐tosyl‐o‐aminophenoxy]butane IV , and 1,4‐bis(N‐octyl‐N‐tosyl‐o‐aminophenoxy)butane V as neutral carriers. The electrodes exhibited nearly Nernstian responses over the concentration ranges, 2.5×10?4–4.0×10?2, 2.5×10?5–4.0×10?2, 7.9×10?5–4.0×10?2, 2.2×10?5–4.0×10?2, and 1.9×10?4–4.0×10?2 M for electrodes composed with the ionophores I–V , respectively. All electrodes showed pH range of about 4.0 to 11.5 and working temperature range of 22 to 70 °C with isothermal temperature coefficients of 1.19×10?3, 1.16×10?3, 1.16×10?3, 1.00×10?3 , and 1.32×10?3 V/°C for electrodes I–V respectively.  相似文献   

8.
A method is described for the sequential determination of Sb(III) and Sb(V) using Osteryoung square wave cathodic stripping voltammetry. It employs an in-situ plated bismuth-film on an edge-plane graphite substrate as the working electrode. Selective electro-deposition of Sb(III)/Sb(V) is accomplished by applying a potential of ?500 mV vs. Ag/AgCl, followed by reduction to stibine at a more negative potential in the stripping step. Stripping was carried out by applying a square wave waveform between ?500 and ?1400 mV to the antimony deposited. The stripping peak current at ?1150 mV is directly proportional to the concentration of Sb( III)/Sb(V). The calibration plots for Sb (III) were linear up to 12.0?µg L?1 depending on the time of deposition. The calibration plots for Sb (V) were linear up to 7.0?µg L?1, also depending on the time of deposition. The relative standard deviation in the determination of 0.1?µg L?1 of Sb(III) is 4.0% (n?=?5), and the limit of detection is as low as 2 ng L?1. In case of 0.1?µg L?1 Sb(V), the relative standard deviation is 3.0% (n?=?5) and the detection limit also is 2 ng L?1. The method was applied to the analysis of river and sea water samples.  相似文献   

9.
Simple, strip-type sensors based on 7,7,8,8-tetracyanoquinodimethane-modified graphite were prepared using screen printing techniques. The electrochemical strips operated at low potentials [50 mV at pH 7.0 or 100 mV at pH 4.8 vs. Ag/AgCl (printed)] and had a sensitivity of 3.5–7.1 μA 1 mmol?1L-ascorbic acid. Determination of ascorbic acid concentration was achieved in 30 s and required samples of ca. 30 μl. The current output of the electrodes was found to be relatively insensitive to variations in pH over the range 5.0–8.5. Between 15 and 35 °C, the temperature coefficient was 2.7% °C?1. The printed electrodes were suitable for single determinations but demonstrated adequate stability for periodic re-use. The ascorbic acid concentration in the juice of fresh fruit was determined using the electrochemical printed electrodes and a commercially available enzymatic test kit. Close agreement was observed between the two methods [r=0.9997 (n=12),slope=0.9798]. The limit of detection using the printed sensor for real samples was calculated as 4mg l?1(22 μM).  相似文献   

10.
《Analytical letters》2012,45(11):1773-1779
Abstract

The response of an ion-selective electrode can be amplified by connecting the cell, which is composed of an ion-selective electrode and a reference electrode, in series. For a cell using 1, 2 or 3 valinomycin electrodes connected in series, the response slopes to 1 × 10?5 ?1 × 10?1 M K+ were 58, 116 and 174 mV/activity decade (a.d.) at 25°C, respectively. This amplification method would especially be useful for accurate determinations with electrodes in the range of low concentrations outside the Nernstian response or for determinations of polyvalent ions, in which both cases exhibit small emf response changes in changing the ion concentration.  相似文献   

11.
Titania sol‐gel modified gold electrode (TSGMGE) was prepared with the usage of a new proposed cold deposition method at ?10 °C. Scanning electron microscope (SEM) operating at 30 kV was used to obtain micrographs of unmodified and modified electrodes. The obtained results showed that this procedure yields a sol‐gel with high porosity in comparison to conventional methods. The modified Au electrode was fabricated by trapping the L‐glutamine in titania sol‐gel at low temperatures to preparation of a new titania sol‐gel glutamine modified gold electrode (TSGGMGE). The possibility determination of traces of Cu(II) in the presence of As(III) was investigated using proposed electrode. Under the optimized conditions, copper was accumulated at ?0.35 V (vs. Ag/AgCl) for 40 s in 0.1 M acetate buffer (pH 4.0) in the presence of different amounts of arsenic. Two dynamic linear responses with good reproducibility were observed for copper ions in the concentration range of 1 × 10?6 ?4 × 10?4 M and 4 × 10?8 ?6 × 10?7 M.  相似文献   

12.
The construction and performance characteristics of pentoxifylline selective electrodes were developed. Two types of electrodes: plastic membrane I and coated wire II were constructed based on the incorporation of pentoxifylline with phosphotungstic acid (PTA). The influence of membrane composition, kind of plasticizer, pH of the test solution, soaking time, and foreign ions on the electrodes was investigated. The electrodes showed a Nernstain response with a mean calibration graph slope of 56.77 ± 0.19 and 55.76 ± 0.71 mV decade‐1 at 25 °C for electrode I and II respectively, over pentoxifylline concentration range from 1.0 × 10‐5‐1.0 × 10‐2 and 9.0 × 10‐6‐1.0 × 10‐2 mol L‐1, with detection limits 4.89 × 10‐6 and 3.90 × 10‐6 mol L‐1 for electrode I and II, respectively. The pH range of the constructed electrodes was 4‐6. Interferences from common cations, alkaloids, sugars, amino acids and drug excipients were reported. The results obtained by the proposed electrodes were also applied successfully to the determination of the drug in its pharmaceutical preparations and biological fluids.  相似文献   

13.
《Analytical letters》2012,45(5):764-774
Abstract

Maltodextrins with different dextrose equivalent (DE) values (maltodextrin I: DE 4.0–7.0; maltodextrin II: DE 13.0–17.0; maltodextrin III: DE 16.5–19.5) were used for the design of three enantioselective, potentiometric membrane electrodes (EPMEs) for the assay of S-ketoprofen. The linear concentration ranges for the proposed electrodes were 10?10 to 10?8, 10?9 to 10?5, and 10?10 to 10?7 mol/L, with slopes of 58.0, 58.67, and 58.93 mV/decades of concentration and limits of detection of 1.49 × 10?8, 2.43 × 10?8, and 4.19 × 10?11 mol/L for EPMEs based on maltodextrin I, II, and III, respectively. The EPMEs showed high reliability and effectiveness for the enantioanalysis of S-ketoprofen raw material and its pharmaceutical formulations.  相似文献   

14.

This article focused on the construction and characteristics of novelty and sensitivity of modified carbon paste electrodes for determination of doxycycline hydrochloride (DC.HCl) in urine, serum and pharmaceutical preparations. It was based on the incorporation of α-cyclodextrine (α-CD) and multi-walled carbon nanotube (MWCNT) ionophores which improved the characteristics of the electrodes with tricresylphosphate (TCP) (electrode I) and o-nitrophenyloctylether (o-NPOE) (electrode II) as plasticizers, respectively. The constructed electrodes, at optimum paste composition, exhibited good Nernstian response for determination of doxycycline hydrochloride over a linear concentration range from 1.0 × 10–7 to 1.0 × 10–2 and 1.22 × 10–7 to 1.0 × 10–2 mol L–1 with detection limit of 1.0 × 10–7 and 1.22 ×10–7 mol L–1 and with slope values of (58.7 ± 0.2) mV decade–1 and (58.0 ± 0.6) mV decade–1, for modified carbon paste electrodes (MCPEs; electrodes I and II), respectively. The results showed fast dynamic response time (about 6–7 s) and long lifetime in the range from 4 to 5 months where the response of the electrodes was not affected by pH variation within the range from 2 to 8 and 2 to 7.5 for electrodes I and II, respectively. Electrodes I and II showed high selectivity for doxycycline hydrochloride with respect to a large number of interfering species including foreign inorganic, organic species, excipients and the fillers added to the pharmaceutical preparation. The constructed electrodes were successfully applied for determination of DC.HCl in pure form, its pharmaceutical preparations and biological fluids (urine and serum) using standard addition, calibration curves and potentiometric titration methods. The results obtained using these potentiometric electrodes were comparable with those obtained using official method. The results were satisfactory with excellent percentage recovery comparable or better than those obtained by other routine methods.

  相似文献   

15.
A pencil graphite electrode (PGE) electrodeposited by a polypyrrole conducting polymer doped with tartrazine (termed as PGE/PPy/Tar) was prepared and used as a zinc (II) solid-state ion-selective electrode. For the preparation of the zinc sensor electrode, electrodeposition of a polypyrrole nanofilm was carried out potentiostatically (E app?=?0.75 V vs SCE) in a solution containing 0.010 M pyrrole and 0.001 M tartrazine trisodium salt. A pencil graphite and Pt wire were used as working and auxiliary electrodes, respectively. The introduced electrode in the current paper can be fabricated simply and was found to possess high selectivity, exhibited wide working concentration range, sufficiently rapid response, potential stability, and very good sensitivity to Zn (II) ion. The sensor electrode showed a linear Nernstian response over the range of 1.0?×?10?5 to 1.0?×?10?1 M with a slope of 28.23 mV per decade change in zinc ion concentration. A detection limit of 8.0?×?10?6 M was obtained. The optimum pH working of the electrode was found to be 5.0.  相似文献   

16.
Two novel potentiometric azide membrane sensors based on the use of manganese(III)porphyrin [Mn(III)P] and cobalt(II)phthalocyanine [Co(II)Pc] ionophores dispersed in plasticized poly(vinyl chloride) PVC matrix membranes are described. Under batch mode of operation, [Mn(III)P] and [Co(II)Pc] based membrane sensors display near‐ and sub‐Nernstian responses of ?56.3 and ?48.5 mV decade?1 over the concentration ranges 1.0×10?2?2.2×10?5 and 1.0×10?2?5.1×10?5 mol L?1 azide and detection limits of 1.5×10?5 and 2.5×10?5 mol L?1, respectively. Incorporation of both membrane sensors in flow‐through tubular cell offers sensitive detectors for flow injection (FIA) determination of azide. The intrinsic characteristics of the [Mn(III)P] and [Co(II)Pc] based detectors in a low dispersion manifold show calibration slopes of ?51.2 and ?33.5 mV decade?1 for the concentration ranges of 1.0×10?5?1.0×10?2 and 1.0×10?4?1.0×10?2 mol L?1 azide and the detection limits are1.0×10?5 and 3.1×10?5 mol L?1, respectively. The detectors are used for determining azide at an input rate of 40–60 samples per hour. The responses of the sensors are stable within ±0.9 mV for at least 8 weeks and are pH independent in the range of 3.9?6.5. No interferences are caused by most common anions normally associated with azide ion.  相似文献   

17.
《Electroanalysis》2005,17(17):1540-1546
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5‐dimercapto‐1,3,4‐thiadiazole (DTTPSG‐CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range ?0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L?1 KNO3 ; v=20 mV s?1) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG‐CPE. The anodic wave peak at 0.31 V is well‐defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, “cleaning” solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg L?1 Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

18.
《Analytical letters》2012,45(7):1411-1420
Abstract

Cadmium in the presence of 0.04 M NaCl as the electrolyte was determined using stripping voltammetry with superimposed constant amplitude pulses of negative polarity (SVPNP) or positive polarity (SVPPP), and differential pulses stripping voltammetry using rotating disc glass carbon electrode (RDGCE). The SVPNP was found to give the greatest sensitivity. The anodic peak was obtained at potential ?850 to ?795 mV due to the oxidation of cadmium to cadmium(II). Linear calibration curves were obtained in the concentration range between 1.5×10?9–2×10?10 M. The relative standard deviation is 4.25% at very low concentration of 2×10?10 M. This method was successfully applied to the determination of cadmium in some foodstuffs (wheat and its products, vegetables) after acid digestion.  相似文献   

19.
A carbon paste electrode (CPE) was modified with multi-wall carbon nanotubes and successfully applied to the determination of silver ion by differential pulse anodic stripping voltammetry. Compared to a conventional CPE, a remarkably improved peak current response and sensitivity is observed. The analytical procedure consisted of an open circuit accumulation step for 2?min in ?0.4?V, this followed by an anodic potential scan between +0.2 and?+?0.6?V to obtain the voltammetric peak. The oxidation peak current is proportional to the concentration of silver ion in the range from 1.0?×?10?8 to 1.0?×?10?5?mol?L?1, with a detection limit of 1.8?×?10?9?mol?L?1 after an accumulation time of 120?s. The relative standard deviation for 7 successive determinations of Ag(I) at 0.1???M concentration is 1.99%. The procedure was validated by determining Ag(I) in natural waters.
Figure
Differential pulse voltammogram (DPV) of Ag+ solution at MCPE  相似文献   

20.
许文菊  袁若  柴雅琴 《中国化学》2009,27(1):99-104
本文以2,9,16,23-四硝基酞菁铜(II) (Cu(II)TNPc) 和2,9,16,23-四氨基酞菁铜(II) (Cu(II)TAPc) 为载体制备PVC聚合膜,构建了水杨酸根选择性电极,并探讨了该电极的选择性响应性能。研究了增塑剂的性质、载体的含量及阴、阳离子添加剂对电极电位响应的影响。结果表明,基于Cu(II)TNPc为载体的PVC膜电极对水杨酸根 (Sal-) 呈现出优先选择性电位响应。具有最佳电位响应的电极的膜组成是:(w/w) 3.0% Cu(II)TNPc,67.0% o-NPOE,29.5% PVC和0.5% NaTPB。基于该组成的电极的线性响应范围为1.0×10-1-9.0×10-7 mol·L-1,检测下限为7.2×10-7 mol·L-1,斜率为-59.8±0.5 mV/decade;其响应快速,稳定性好,适宜的pH范围是3.0-7.0。并成功运用于了实际样品中水杨酸含量的测定,获得令人满意的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号