首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim H  Suh MP 《Inorganic chemistry》2005,44(4):810-812
An 8-fold interpenetrating diamondoid network, [Ni(cyclam)]2[TCM]. 2DMF x 10H2O, has been prepared by the self-assembly of a Ni-(II)cyclam macrocyclic complex and sodium tetrakis[4-(carboxyphenyl)-oxamethyl]methane in DMF/water. The network shows an unusual [4 + 4] mode of interpenetration, generating 1D channels of effective window size 6.7 A x 4.7 A. The network shows flexible behavior: it becomes nonporous on removal of the guest molecules occupying the channels, but the open structure is restored when the desolvated solid is immersed in the mixture of H2O/DMF (1:1, v/v) for 5 min. The desolvated host has different binding capacities for n-butanol, pyridine, and ethanol.  相似文献   

2.
A two-dimensional (2D) square-grid coordination polymer, {[Ni(cyclam)]2[BPTC]}n.2nH2O (1), has been assembled from [Ni(cyclam)](ClO4)2 (cyclam = 1,4,8,11-tetraazacyclotetradecane) and H4BPTC (H4BPTC = 1,1'-biphenyl-2,2',6,6'-tetracarboxylic acid) in H2O/MeOH (2.5:1, v/v) in the presence of triethylamine. When solid 1 was immersed in the EtOH solutions of AgNO3 (1.3 x 10(-1) M) and NaAuCl4.2H2O (3.4 x 10(-2) M), respectively, for 5 min at room temperature, solids including Ag (3.7 +/- 0.4 nm, diameter) and Au (2 nm, diameter) nanoparticles were formed by the redox reactions between Ni(II) ions incorporated in 1 and metal ions, as evidenced by HRTEM images, EPR, and XPS spectra. When single-crystal 1 was heated at 180 degrees C under 10(-5) Torr for 24 h, it was transformed to dehydrated compound {[Ni(cyclam)]2[BPTC]}n (2) in the single-crystal-to-single-crystal manner. The X-ray crystal structure of 2 reveals extensive dynamic motions of the molecular components in response to guest removal, involving rotation of the carboxylate and macrocycle, swing of the biphenyl, and bending of the macrocyclic coordination plane toward the carboxylate plane, which reduces the interlayer distance.  相似文献   

3.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

4.
Ni(II) coordination polymers with a 4,4'-azobis(pyridine) (azpy) ligand, {[Ni2(NCX)4(azpy)4].G}n (X = S, G (guest molecule) = MeOH (1.MeOH); X = S, G = EtOH (1.EtOH); X = S, G = H2O (1.H2O); X = S, G = no guest (1); X = Se, G = MeOH (2.MeOH); X = Se, G = H2O (2.H2O); X = Se, G = no guest (2)), have been synthesized and structurally characterized with their porosity. These compounds have one-dimensional periodic ultramicropores that contain the small guest molecules, H2O, MeOH, or EtOH, whose hydroxy groups interact with the S or Se atoms of isothiocyanate or isoselenocyanate, respectively, via -S(Se)...HO- hydrogen bonds. Although the molecular dimensions of the MeOH guest are considerably larger than the window size of the ultramicropore, 1.MeOH and 2.MeOH easily release their guest molecules without decomposition of the framework to form 1 and 2 without any guest molecules. This shows that 1 and 2 have dynamic ultramicropores constructed from the interpenetrating framework. The guest desorption experiments using 1.MeOH and 1.EtOH reveal that the difference in the desorption behavior is due to van der Waals interactions that depend on the molecular shape of the guest molecule in the ultramicropores and/or an entrance blocking effect that depends on the minimum dimensions of the guest molecule for the pore windows. A marked difference in the N2 and CH4 adsorption isotherms was observed and is associated with the strength of the host-guest interaction.  相似文献   

5.
The robust metal-organic framework compound {[Zn(2)(L)] x 4H(2)O}(infinity) I has been synthesized by hydrothermal reaction of ZnCl(2) and 4,4'-bipyridine-2,6,2',6'-tetracarboxylic acid (H(4)L). Compound I crystallizes in a chiral space group, P4(2)2(1)2, with the chirality generated by the helical chains of hydrogen-bonded guest water molecules rather than by the coordination framework. Removal of guest water molecules from the crystal affords the porous material, [Zn(2)(L)](infinity) (II), which has very high thermal stability and is chemically inert. The N(2) isotherm of II at 77 K suggests a uniform porous structure with a BET surface area of 312.7 m(2)/g and a remarkably strong interaction with N(2) molecules (betaE(0) = 29.6 kJ mol(-)(1)). II also exhibits significant gas storage capacities of 1.08 wt % for H(2) at 4 bar and 77 K and 3.14 wt % (44.0 cm(3)/g, 67 v/v) for methane at 9 Bar at 298 K. The adsorption behavior of II toward organic solvent vapors has also been studied, and isotherms reveal that for different solvent vapors adsorption is dominated by two types of processes, absorbate-absorbate or absorbate-absorbent interactions. The adsorption and desorption kinetic processes in II are determined mainly by the molecular size of the guest species and their interaction with the host.  相似文献   

6.
The substitution of Mo(III) for Cr(III) in metal-cyanide clusters is demonstrated as an effective means of increasing the strength of the magnetic exchange coupling and introducing magnetic anisotropy. Synthesis of the octahedral complex [(Me(3)tacn)Mo(CN)(3)] (Me(3)tacn = N,N',N"-trimethyl-1,4,7-triazacyclononane) is accomplished with the addition of precisely 3 equiv of LiCN to a solution of [(Me(3)tacn)Mo(CF(3)SO(3))(3)] in DMF. An excess of LiCN prompts formation of a seven-coordinate complex, [(Me(3)tacn)Mo(CN)(4)](1)(-), whereas less LiCN produces multinuclear species such as [(Me(3)tacn)(2)Mo(2)(CN)(5)](1+). In close parallel to reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], assembly reactions between [(Me(3)tacn)Mo(CN)(3)] and [Ni(H(2)O)(6)](2+) or [(cyclam)Ni(H(2)O)(2)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) afford face-centered cubic [(Me(3)tacn)(8)Mo(8)Ni(6)(CN)(24)](12+) and linear [(Me(3)tacn)(2)(cyclam)NiMo(2)(CN)(6)](2+) clusters, respectively. Generation of the former involves a thermally induced cyanide linkage isomerization, which rapidly leads to a low-spin form of the cluster containing diamagnetic Ni(II) centers. The cyclic voltammagram of this species in DMF reveals a sequence of six successive reduction waves spaced approximately 130 mV apart, suggesting class II mixed-valence behavior upon reduction. The magnetic properties of the aforementioned linear cluster are consistent with the expected ferromagnetic coupling and an S = 4 ground state, but otherwise vary slightly with the specific conformation adopted (as influenced by the packing of associated counteranions and solvate molecules in the crystal). Magnetization data indicate an axial zero-field splitting parameter with a magnitude falling in the range [D] = 0.44-0.72 cm(-1), and fits to the magnetic susceptibility data yield exchange coupling constants in the range J = 17.0-17.6 cm(-1). These values represent significant increases over those displayed by the analogous Cr(III)-containing cluster. When perchlorate is used as a counteranion, [(Me(3)tacn)(2)(cyclam)NiMo(2)(CN)(6)](2+) crystallizes from water in a dimeric form with pairs of the linear clusters directly linked via hydrogen bonding. In this case, fitting the magnetic susceptibility data requires use of two coupling constants: one intramolecular with J = 14.9 cm(-1) and another intermolecular with J' = -1.9 cm(-1). Reacting [(Me(3)tacn)Mo(CN)(3)] with a large excess of [(cyclam)Ni(H(2)O)(2)](2+) produces a [(Me(3)tacn)(2)(cyclam)(3)(H(2)O)(2)Ni(3)Mo(2)(CN)(6)](6+) cluster possessing a zigzag structure that is a simple extension of the linear cluster geometry. Its magnetic behavior is consistent with weaker ferromagnetic coupling and an S = 6 ground state. Similar reactions employing an equimolar ratio of reactants afford related one-dimensional chains of formula [(Me(3)tacn)(cyclam)NiMo(CN)(3)](2+). Once again, the ensuing structure depends on the associated counteranions, and the magnetic behavior indicates ferromagnetic coupling. It is hoped that substitutions of the type exemplified here will be of utility in the design of new single-molecule magnets.  相似文献   

7.
Yeung WF  Lau PH  Lau TC  Wei HY  Sun HL  Gao S  Chen ZD  Wong WT 《Inorganic chemistry》2005,44(19):6579-6590
The synthesis, structures, and magnetic properties of four cyano-bridged M(II)Ru(III)2 compounds prepared from the paramagnetic Ru(III) building blocks, trans-[Ru(salen)(CN)2]- 1 [H2salen = N,N'-ethylenebis(salicylideneimine)] and trans-[Ru(acac)2(CN)2]- (Hacac = acetylacetone), are described. Compound 2, {Mn(CH3OH)4[Ru(salen)(CN)2]2}.6CH3OH.2H2O, is a trinuclear complex that exhibits antiferromagnetic coupling between Mn(II) and Ru(III) centers. Compound 3, {Mn(H2O)2[Ru(salen)(CN)2]2.H2O}n, has a 2-D sheetlike structure that exhibits antiferromagnetic coupling between Mn and Ru, leading to ferrimagnetic-like behavior. Compound 4, {Ni(cyclam)[Ru(acac)2(CN)2]2}.2CH3OH.2H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane), is a trinuclear complex that exhibits ferromagnetic coupling. Compound 5, {Co[Ru(acac)2(CN)2]2}n, has a 3-D diamond-like interpenetrating network that exhibits ferromagnetic ordering below 4.6 K. The density functional theory (DFT) method was used to calculate the molecular magnetic orbitals and the magnetic exchange interaction between Ru(III) and M(II) (Mn(II), Ni(II)) ions.  相似文献   

8.
A high-nuclearity polyoxopalladate compound, [Pd(II)(2)?{H(7)Pd(II)(15)O(10)(PO(4))(10)}](9-) {Pd(II)(17)}, comprising a {Pd(15)} host occupied by a {Pd(2)} guest and the parent pristine "empty" [H(7)Pd(II)(15)O(10)(P(V)O(4))(10)](13-) {Pd(15)} cluster have both been prepared and characterized by single-crystal X-ray crystallography, (31)P NMR, CSI-MS, and XPS. The encapsulated {Pd(2)} has a short Pd(II)-Pd(II) distance within the {Pd(15)} host. Solution studies indicate that the empty host and filled guest complex are in equilibrium with each other, and UV titrations revealed a binding constant of ca. 10(3) for the guest Pd(II) ions, with a binding stoichiometry of almost 2.  相似文献   

9.
The reaction of M(S2O6) (M = Cu(II), Ni(II), and Co(II)) with 4,4'-bipyridine-N,N'-dioxide (bpdo) results in the formation of novel 3D, 2D, and mononuclear complexes. Complex 1, {[Cu(H2O)(bpdo)2](S2O6)(H2O)}n, is a 2-D wavelike polymer with the Cu(II) ion located on a 2-fold axis and having a distorted square-pyramidal coordination sphere. With Co(II) and Ni(II), 3-D complexes, {[M(bpdo)3](S2O6)(C2H5OH)7}n [M = Co(II) (2), Ni(II) (3)], were obtained. The metal atoms are situated on centers of symmetry and have octahedral environments coordinated to six bpdo molecules. The same reaction in aqueous solution with a metal/ligand ratio of 1:1 results in the formation of mononuclear complexes, {[M(bpdo)(H2O)5](SO4)(H2O)2} [M = Co(II) (4), Ni(II) (5)], accompanied by the decomposition of the dithionate anions S2O6(2-) to sulfate anions SO4(2-).  相似文献   

10.
Zhao X  Liang D  Liu S  Sun C  Cao R  Gao C  Ren Y  Su Z 《Inorganic chemistry》2008,47(16):7133-7138
The Dawson anion P 2W 18O 62 (6-) has been used as a noncoordinating polyoxoanion template for the construction of two metal-organic frameworks, namely, [M 2(bpy) 3(H 2O) 2(ox)][P 2W 18O 62]2(H 2-bpy). nH 2O (M = Co(II), n = 3 ( 1); M = Ni(II), n = 2 ( 2)) (bpy = 4,4'-bipyridine; ox = C 2O 4 (2-)). Single-crystal X-ray analysis reveals that both of the structures exhibit 3D host frameworks constructed from the oxalate-bridged binuclear superoctahedron secondary building units (SBUs) and bpy linkers and the voids of which are occupied by Dawson anions, guest bpy, and water molecules. Magnetic studies reveal that there are antiferromagnetic exchange interactions among the transition-metal centers in compounds 1 and 2. Furthermore, a compound 1-modified carbon paste electrode ( 1-CPE) displays good electrocatalytic activity toward the reduction of nitrite.  相似文献   

11.
Infrared spectra of metal(II) selenate hydrates (MeSeO4.nH2O and Na2Me(SeO4)2.2H2O; n=6, 5, 4, 1; Me=Mg, Mn, Co, Ni, Cu, Zn, Cd) containing matrix-isolated SO42- guest ions are reported and discussed with respect to the S-O stretching modes 3 and 1. An adequate measure for the SO42- guest ion distortion is the site group splitting deltanuas (deltanuab and deltanuac in the case of a doublet and a triplet for 3, respectively; a, being the highest wavenumbered component of nu3) and deltanumax (the difference between the highest and the lowest wave numbered S-O stretching modes). It has been shown that the SO42- guest ion distortion depends on both the number of the sulfate oxygen atoms involved in coordinative bonds with the metal(II) ions and the electronic configuration of the metal(II) ions, i.e. their crystal field stabilization energy (CFSE) additionally to the site symmetry and the local potential at the lattice site of the host lattice. The SO42- guest ions matrix-isolated in MeSeO4.H2O (Me=Mn, Co, Zn) and in Na2Me(SeO4)2.2H2O (Me=Mn, Cu, Cd) exhibit three bands corresponding to the nu3 modes as deduced from the site group analysis and deltanuab approximately equal to deltanubc. When SO42- guest ions are incorporated in the triclinic Na2Me(SeO4)2.2H2O host lattices (Me=Co, Ni, Zn) the nu3 stretching region resembles a higher local symmetry of the SO42- guest ions (an approximate (A1 + E) splitting) than the crystallographic one (i.e. deltanuab>deltanubc instead of deltanuab approximately equal to deltanubc) and, hence, the ratio deltanuab/deltanubc has to be taken into account (the higher value of the ratio deltanuab/deltanubc, the weaker is the distortion of the SO42- guest ions). The SO42- guest ions incorporated in MeSeO4.nH2O (n=6, 5, 4) exhibit a higher local symmetry of the guest ions than that deduced from the site group analysis (D2d for the SO42- guest ions in MeSeO4.5H2O, MeSeO4.4H2O and in the monoclinic MeSeO4.6H2O host lattices and close to Td in the tetragonal MeSeO4.6H2O host lattices). The analysis of the infrared spectra of selenate host lattices containing SO42- guest ions reveals that the guest ions are stronger distorted when the adjacent metal(II) ions have CFSE not equal to 0. These ions are more resistant to angular deformations of the MeO6-octahedra (i.e. changes in the O-Me-O bond angles), thus facilitating the SO42- guest ion distortion as compared to those having CFSE=0 which allow stronger angular deformations of the respective metal octahedra. Infrared spectra of kieserite-type compounds MeSeO4.H2O (Me=Mn, Co, Zn) containing matrix-isolated SO42- guest ions and Me'2+ guest ions different from those of the host ions (i.e. Me'SO4.H2O in MeSeO4.H2O) are also presented and discussed (double matrix-spectroscopy).  相似文献   

12.
Four new nickel(II) complexes, [Ni(2)L(2)(NO(2))(2)]·CH(2)Cl(2)·C(2)H(5)OH, 2H(2)O (1), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4)·DMF (2a), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4) (2b) and [Ni(3)L'(2)(μ(3)-NO(2))(2)(CH(2)Cl(2))](n)·1.5H(2)O (3) where HL = 2-[(3-amino-propylimino)-methyl]-phenol, H(2)L(') = 2-({3-[(2-hydroxy-benzylidene)-amino]-propylimino}-methyl)-phenol and DMF = N,N-dimethylformamide, have been synthesized starting with the precursor complex [NiL(2)]·2H(2)O, nickel(ii) perchlorate and sodium nitrite and characterized structurally and magnetically. The structural analyses reveal that in all the complexes, Ni(II) ions possess a distorted octahedral geometry. Complex 1 is a dinuclear di-μ(2)-phenoxo bridged species in which nitrite ion acts as chelating co-ligand. Complexes 2a and 2b also consist of dinuclear entities, but in these two compounds a cis-(μ-nitrito-1κO:2κN) bridge is present in addition to the di-μ(2)-phenoxo bridge. The molecular structures of 2a and 2b are equivalent; they differ only in that 2a contains an additional solvated DMF molecule. Complex 3 is formed by ligand rearrangement and is a one-dimensional polymer in which double phenoxo as well as μ-nitrito-1κO:2κN bridged trinuclear units are linked through a very rare μ(3)-nitrito-1κO:2κN:3κO' bridge. Analysis of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the nickel(ii) ions in four complexes, with exchange parameters J of -5.26, -11.45, -10.66 and -5.99 cm(-1) for 1, 2a, 2b and 3, respectively.  相似文献   

13.
A metal-organic pillared bilayer open framework having 3D channels, [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).6C(5)H(5)N.36H(2)O (BOF-1, 1), has been assembled from bismacrocyclic nickel(II) complex [Ni(2)(C(26)H(52)N(10))(Cl)(4)].H(2)O and sodium 1,3,5-benzenetricarboxylate (Na(3)BTC). The channels are occupied by pyridine and water guest molecules. When the single crystal of 1 was dried in air and then heated at 75 degrees C for 1.5 h, respectively, [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).30H(2)O (1') and [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).4H(2)O (2) resulted with retention of the single crystallinity. The X-ray structures reveal spongelike dynamic behavior of the bilayer framework that reduces the interlayer distance in response to the amount of guest molecules. Solid 2 differentiates various alcohols. When 1 was immersed in pyridine and benzene, guest molecules were exchanged with retention of the single-crystal nature to give rise to [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).20pyridine.6H(2)O (3) and [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).14benzene.19H(2)O (4), respectively. Furthermore, crystal 1 reacted with I(2) via single-crystal-to-single-crystal transformation to produce [Ni(2)(C(26)H(52)N(10))](3)[C(9)H(3)O(6)](4)(I(3))(4).nI(2).17H(2)O (5) that consists of positively charged framework incorporating nickel(III) and nickel(II) ions and the channels including I(3)(-) and I(2).  相似文献   

14.
A series of guest-binding Cu(II) coordination polymers, {[Cu(bpetha)2(acetone)2].2PF6}n (bpetha = 1,2-bis(4-pyridyl)ethane) (1), {[Cu(bpetha)2(DMF)2].2PF6}n (2), {[Cu(bpetha)(2)(MeCN)(2)].2PF6.2MeCN}n (3), {[Cu(bpetha)2(H2O)2].2PF6.3THF.2H2O}n (4), {[Cu(bpetha)2(H2O)2].2PF6.3dioxane}n (5), and {[Cu(bpetha)2(H2O)2].2PF6.2-PrOH.2H2O}n (6), have been synthesized and crystallographically characterized. Their framework stabilities and guest-exchange properties have also been investigated. All compounds form a similar framework motif, a "double chain", in which the bpetha ligands bridge Cu(II) centers to form 1-D [Cu(bpetha)2]n double chains. A variety of Lewis base guest molecules, such as H2O, acetone, DMF, MeCN, THF, dioxane, and 2-PrOH, are incorporated into the assembly of the 1-D double chains. These chains flexibly change their forms of assembly in a guest-dependent manner. Interestingly, acetone, DMF, and MeCN guests with a carbonyl or cyanide group coordinate directly to the axial sites of the Cu(II) centers; in contrast, THF, dioxane, and 2-PrOH guests with an ether or alcohol group are incorporated into the frameworks not via coordination bonds but via weak interactions (hydrogen bonds and van der Waals forces). This selectivity is probably due to steric effects at coordinated oxygen or nitrogen atoms of the guests. Crystal-to-crystal transformations triggered by guests are observed, during which guests coordinated to the Cu(II) axial sites are readily removed and replaced by other guests.  相似文献   

15.
Chen H  Ma CB  Yuan DQ  Hu MQ  Wen HM  Liu QT  Chen CN 《Inorganic chemistry》2011,50(20):10342-10352
A family of Mn(III)/Ni(II) heterometallic clusters, [Mn(III)(4)Ni(II)(5)(OH)(4)(hmcH)(4)(pao)(8)Cl(2)]·5DMF (1·5DMF), [Mn(III)(3)Ni(II)(6)(N(3))(2)(pao)(10)(hmcH)(2)(OH)(4)]Br·2MeOH·9H(2)O (2·2MeOH·9H(2)O), [Mn(III)Ni(II)(5)(N(3))(4)(pao)(6)(paoH)(2)(OH)(2)](ClO(4))·MeOH·3H(2)O (3·MeOH·3H(2)O), and [Mn(III)(2)Ni(II)(2)(hmcH)(2)(pao)(4)(OMe)(2)(MeOH)(2)]·2H(2)O·6MeOH (4·2H(2)O·6MeOH) [paoH = pyridine-2-aldoxime, hmcH(3) = 2, 6-Bis(hydroxymethyl)-p-cresol], has been prepared by reactions of Mn(II) salts with [Ni(paoH)(2)Cl(2)], hmcH(3), and NEt(3) in the presence or absence of NaN(3) and characterized. Complex 1 has a Mn(III)(4)Ni(II)(5) topology which can be described as two corner-sharing [Mn(2)Ni(2)O(2)] butterfly units bridged to an outer Mn atom and a Ni atom through alkoxide groups. Complex 2 has a Mn(III)(3)Ni(II)(6) topology that is similar to that of 1 but with two corner-sharing [Mn(2)Ni(2)O(2)] units of 1 replaced with [Mn(3)NiO(2)] and [MnNi(3)O(2)] units as well as the outer Mn atom of 1 substituted by a Ni atom. 1 and 2 represent the largest 3d heterometal/oxime clusters and the biggest Mn(III)Ni(II) clusters discovered to date. Complex 3 possesses a [MnNi(5)(μ-N(3))(2)(μ-OH)(2)](9+) core, whose topology is observed for the first time in a discrete molecule. Careful examination of the structures of 1-3 indicates that the Mn/Ni ratios of the complexes are likely associated with the presence of the different coligands hmcH(2-) and/or N(3)(-). Complex 4 has a Mn(III)(2)Ni(II)(2) defective double-cubane topology. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-4. Fitting of the obtained M/(Nμ(B)) vs H/T data gave S = 5, g = 1.94, and D = -0.38 cm(-1) for 1 and S = 3, g = 2.05, and D = -0.86 cm(-1) for 3. The ground state for 2 was determined from ac data, which indicated an S = 5 ground state. For 4, the pairwise exchange interactions were determined by fitting the susceptibility data vs T based on a 3-J model. Complex 1 exhibits out-of-phase ac susceptibility signals, indicating it may be a SMM.  相似文献   

16.
Maniam P  Stock N 《Inorganic chemistry》2011,50(11):5085-5097
In the search of Ni based metal-organic frameworks (MOFs) containing paddle-wheel type building units, three chemical systems Ni(2+)/H(n)L/base/solvent with H(n)L = H(3)BTC (1,3,5-benzenetricarboxylic acid), H(3)BTB (4,4',4',-benzene-1,3,5-triyl-tris(benzoic acid)), and H(2)BDC (terephthalic acid) were investigated using high-throughput (HT) methods. In addition to the conventional heating, for the first time HT microwave assisted synthesis of MOFs was carried out. Six new compounds were discovered, and their fields of formation were established. In the first system, H(3)BTC was employed and a comprehensive HT-screening of compositional and process parameters was conducted. The synthesis condition for the Ni paddle-wheel unit was determined and two compounds [Ni(3)(BTC)(2)(Me(2)NH)(3)]·(DMF)(4)(H(2)O)(4) (1a) and [Ni(6)(BTC)(2)(DMF)(6)(HCOO)(6)] (1b) were discovered (Me(2)NH = dimethylamine, DMF = dimethylformamide). In the second system, the use of the extended tritopic linker H(3)BTB and the synthesis conditions for the paddle-wheel units led to the porous MOF, [Ni(3)(BTB)(2)(2-MeIm)(1.5)(H(2)O)(1.5)]·(DMF)(9)(H(2)O)(6.5) (2), (2-MeIm = 2-methylimidazole). This compound shows a selective adsorption of H(2)O and H(2) with a strong hysteresis. In the third system, H(2)BDC was used, and the base (DABCO) was incorporated as a bridging ligand into all structures. Thus, two pillared layered porous MOFs [Ni(2)(BDC)(2)(DABCO)]·(DMF)(4)(H(2)O)(1.5) (3a) and [Ni(2)(BDC)(2)(DABCO)]·(DMF)(4)(H(2)O)(4) (3b) as well as a layered compound [Ni(BDC)(DABCO)]·(DMF)(1.5)(H(2)O)(2) (3c) were isolated. The 3a and 3b polymorphs of the [Ni(2)(BDC)(2)(DABCO)] framework can be selectively synthesized. The combination of microwave assisted heating, low overall concentration, stirring of the reaction mixtures, and an excess of DABCO yields a highly crystalline pure phase of 3b. The fields of formation of all compounds were established, and scale-up was successfully performed for 1b, 2, 3a, 3b, and 3c. All compounds were structurally characterized. In addition to IR, elemental and TG analyses, gas and vapor sorption experiments were carried out.  相似文献   

17.
Three types of heteropolyvanadates, [(C2H5)4N]4[PdV6O18] (1), [(C2H5)4N]4[Cu2V8O24] (2), and [(C6H5)4P]4[Ni4V10O30(OH)2(H2O)6] (3), were synthesized through the reaction between the [VO3]- anion and metal template cations of Pd(II), Cu(II), and Ni(II). The X-ray crystal structures of 1 (a = 29.952(4) A, b = 12.911(2) A, and c = 13.678(2) A, orthorhombic, space group Pca2(1) with Z = 4), 2 (a = 13.740(1) A, b = 22.488(2) A, c = 18.505(2) A, and beta= 94.058(2) degrees , monoclinic, space group P2(1)/n with Z = 4), and 3 (a = 12.333(2) A, b = 16.208(4) A, c = 16.516(3) A, alpha = 112.438(3) degrees , beta = 94.735(3) degrees , and gamma = 104.749(3) degrees , triclinic, space group P with Z = 1) demonstrate that the metal cationic species induced cyclic [VO3](n-)n (n = 6, 8, 10) ring formation and the cations are incorporated in the rings themselves. In the metal inclusion products, the cyclic vanadates act as macrocyclic ligands, in which the metal cationic species act as the templates. The cyclic vanadate is composed of tetrahedral VO4 units that share corners and incorporates a metal cationic species in the center of the molecules. The bowl-shaped complex 1 includes a Pd2+ cation that is coordinated by the oxygen donors of a boatlike hexavanadate ring. The diamagnetic complex 1 was characterized via 51V and 17O NMR spectroscopy. Complex 2 involves an octavanadate ring and two Cu2+, which are located on both sides of the mean plane as defined by the eight oxygen atoms that bridge the vanadium atoms. In the case of complex 3, the di-mu-hydroxo-bridged Ni2+ dimer with capped Ni2+ aqua ions is formed by hydrolysis to form the decavanadate ring, in which two of the tetrahedral vanadate units are not bonded to the Ni2+ core but supported by hydrogen bonds through the aqua-ligand in the capped Ni2+ cation. Complexes 1-3 in solution were clearly identified by their characteristic isotope patterns using ESI-MS studies.  相似文献   

18.
Four forms of nickel(II) and two of zinc(II) dibenzoylmethanates have been isolated and characterized with powder and single-crystal X-ray diffraction analyses, differential scanning calorimetry, magnetic susceptibility measurements, and solid-state 13C cross-polarization/magic angle spinning NMR. Nickel dibenzoylmethanate, Ni(DBM)2 (DBM = PhCOCHCOPh-), forms three polymorphic forms (light-green, brown, and green) and a fourth clathrate form with guest benzene included. The light-green polymorph is metastable. Substituted benzenes induce recrystallization of the polymorph into a stable brown form (C30H22NiO4; a = 26.502(3) A, b = 5.774(1) A, c = 16.456(2) A, beta = 116.03(1) degrees; monoclinic, C2/c; Z = 4). Unlike the other forms, the brown form is diamagnetic and is comprised of monomers of the low-spin [Ni(DBM)2] complex. The Ni(II) is chelated by two DBM ligands in a square planar environment by four donor oxygen atoms. When heated, the brown form transforms to a green form which is stable above 202 degrees C (C90H66Ni3O12; a = 13.819(2) A, b = 16.252(2) A, c = 17.358(2) A, beta = 108.28(1) degrees; monoclinic, P2(1)/n; Z = 2). This polymorph is formed by van der Waals packing of trimers [Ni3(DBM)6] containing linear Ni3 clusters with an Ni-Ni distance of 2.81 A. The cluster is surrounded by six DBM ligands, providing a distorted octahedral environment about each Ni by six oxygen atoms. Benzene stabilizes the trimeric structure at room temperature, forming a [Ni3(DBM)6].2(benzene) inclusion compound (Ni-Ni distance of 2.83 A) with guest benzene molecules located in channels (C90H66Ni3O12 + 2(C6H6); a = 17.670(2) A, b = 20.945(3) A, c=11.209(2) A, beta = 102.57(1) degrees; monoclinic, P2(1)/c; Z = 2). Zinc dibenzoylmethanate has been prepared in two polymorphic forms. The monomeric form contains [Zn(DBM)2] molecules with the zinc center in a distorted tetrahedral environment of four oxygens from the two chelated DBMs (C30H22O4Zn; a = 10.288(2) A, b = 10.716(2) A, c = 12.243(2) A, alpha = 89.19(1) degrees, beta = 75.39(1) degrees, gamma = 64.18(1) degrees; triclinic, P1; Z = 2). Another, dimeric form contains [Zn2(DBM)4] species, with two zinc atoms separated by a distance of 3.14 A and each zinc coordinated by five oxygen atoms (C60H44O8Zn2; a = 25.792(3) A, b = 7.274(1) A, c = 24.307(2) A, beta = 90.58(1) degrees; monoclinic, C2/c; Z = 4). The polymorphic variety of the title complexes and the peculiarities of the Ni(II) and Zn(II) coordination environments are discussed in the context of using the complexes as precursors for new metal complex hosts.  相似文献   

19.
Guo X  Zhu G  Sun F  Li Z  Zhao X  Li X  Wang H  Qiu S 《Inorganic chemistry》2006,45(6):2581-2587
A series of microporous lanthanide metal-organic frameworks, Tb3(BDC)(4.5)(DMF)2(H2O)3.(DMF)(H2O) (1) and Ln3(BDC)(4.5)(DMF)2(H2O)3.(DMF)(C2H5OH)(0.5)(H2O)(0.5) [Ln = Dy (2), Ho (3), Er (4)], have been synthesized by the reaction of the lanthanide metal ion (Ln3+) with 1,4-benzenedicarboxylic acid and triethylenetetramine in a mixed solution of N,N'-dimethylformamide (DMF), water, and C(2)H(5)OH. X-ray diffraction analyses reveal that they are extremely similar in structure and crystallized in triclinic space group P. An edge-sharing metallic dimer and 4 metallic monomers assemble with 18 carboxylate groups to form discrete inorganic rod-shaped building units [Ln6(CO2)18], which link to each other through phenyl groups to lead to three-dimensional open frameworks with approximately 4 x 6 A rhombic channels along the [0,-1,1] direction. A water sorption isotherm proves that guest molecules in the framework of complex 1 can be removed to create permanent microporosity and about four water molecules per formula unit can be adsorbed into the micropores. These complexes exhibit blue fluorescence, and complex 1 shows a Tb3+ characteristic emission in the range of 450-650 nm.  相似文献   

20.
A metal-organic bilayered open framework, [Ni2(C26H52N10)]3[BTC]4.6C5H5N.36H2O (BOF-1, 1), has been prepared by the self-assembly of a new bismacrocyclic nickel(II) complex [Ni2(C26H52N10)(Cl)4].H2O (A) and sodium 1,3,5-benzenetricarboxylate (Na3BTC) in the mixture of water/DMSO/pyridine. The X-ray crystal structure of 1 shows that 2D layers with the cavities of brick-wall motifs (22.6 x 14.3 A2) are formed by the coordination of the nickel(II) complex with BTC3- ions and that the two 2D layers are linked with the p-xylyl bridging groups of the bismacrocycles as pillars to generate 3D channels in the bilayered framework. The voids of the channels occupy 61% of the total volume, which are filled with pyridine and water guest molecules. When 1 was dried at 75 degrees C for 1.5 h, [Ni2(C26H52N10)]3[BTC]4.4H2O (2) resulted by maintaining the single-crystallinity, which exhibited a dramatic decrease in the interlayer spacing as well as changes in the cell parameters. Solid 2 differentiates various alcohols such as MeOH, EtOH, isopropyl alcohol, and benzyl alcohol in toluene. When 1 was immersed in insoluble solvents such as pyridine and benzene, some guest molecules were exchanged with the aromatic molecules to give [Ni2(C26H52N10)]3[BTC]4.20pyridine.6H2O (3) and [Ni2(C26H52N10)]3[BTC]4.14benzene.19H2O (4), respectively. The guest-exchange processes also involve single-crystal-to-single-crystal transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号