首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general strategy for the synthesis of twenty naturally occurring bastadins (all but bastadin 3) is presented. A key retrosynthetic disconnection of the two amide bonds, common in all target molecules, bisects the macrocyclic core into two diaryl ether fragments, an alpha,omega-diamine (western part) and an alpha,omega-dicarboxylic acid (eastern part). Efficient preparation of the synthetically challenging o-mono or dibromo-substituted diaryl ether linkages was achieved employing the diaryl iodonium salt method. Regarding the western part, variations of the aliphatic chain were more efficiently secured by the preparation of two different alpha,omega-aminonitrile moieties. Cobalt boride mediated reduction of the nitrile functionality established the required diamines and, at the same time, provided the necessary variation of the aromatic-ring bromination pattern. Regarding the eastern part, two different dicarboxyl precursors had to be prepared in order to accommodate bromination-pattern variations. Coupling and subsequent macrolactamization of different combinations of these key intermediates may lead at will to any member of this family of marine natural products. Four bastaranes (bastadins 5, 10, 12 and 16) and two isobastaranes (bastadins 20 and 21) were synthesized as a demonstration of the flexibility and efficiency of the approach presented.  相似文献   

2.
The eastern and western diaryl ether portions of the macrocyclic bastadins, natural products from the marine sponge Ianthella sp., have been assembled as [CpRu]+ complexes. In an HPLC study, aminopropyl-functionalised silica was found as a very suitable stationary phase for the chromatographic separation of the different cationic ruthenium sandwich complexes. It is now possible for the first time to effectively monitor and purify [CpRu]+ complexes and to carry them through several synthetic steps.  相似文献   

3.
The first total synthesis of cytotoxic diphenyl ether‐type diarylheptanoids, galeon and pterocarine, was described in which the Ullmann reaction was employed at the final step for the diaryl ether formation of key intermediate, 1‐(3‐bromo‐4‐benzyloxyphenyl)‐7‐(4‐hydroxy‐3‐methoxyphenyl)heptan‐3‐one, assembled by a series of cross‐aldol condensation from 3‐methoxy‐4‐benzyloxybenzaldehyde.  相似文献   

4.
A new tandem catalytic process was designed and developed as a tool for the direct conversion of the widely available feedstock 2,7‐octadienol into an α,ω‐diester. This innovative auto‐tandem catalysis is atom efficient and consists of three consecutive palladium‐catalysed reactions: ether formation, ether carbonylation and alkoxycarbonylation. By using the design of experiments (DoE) approach, significant parameters were determined and the yield of the desired α,ω‐diester was optimised. Model substrates allowed deeper insight into the progress of the reaction to be gained and, as a result, the reaction sequence was uncovered. Furthermore, by simply applying other ligands, a different reaction path was followed, allowing other, new tandem catalytic sequences to be explored and enabling new compounds to be obtained.  相似文献   

5.
Anionic polymerization of isoprene initiated by an alkyl lithium containing a silyl ether protected hydroxyl functionality followed by termination with ethylene oxide gave α,ω‐functionalized polyisoprene with narrow molecular weight distribution and prescribed molecular weight in high yield. Deprotection resulted in α,ω‐hydroxyl polyisoprene (HO‐PI‐OH) that was reacted with triethylaluminium to form the corresponding aluminium alkoxide macroinitiator. The macroinitiator was used for the controlled polymerization of lactide to yield polylactide‐block‐polyisoprene‐block‐polylactide triblock copolymers with narrow molecular weight distributions and free of homopolymer (HO‐PI‐OH) contamination. Microphase separation in these novel triblock copolymers was confirmed by SAXS and DSC.  相似文献   

6.
In this article, the synthesis and self‐assembly of a novel well‐defined biocompatible amphiphilic POEGMA‐PDMS‐POEGMA triblock copolymer were studied. The copolymer was synthesized by atom transfer radical polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) using α,ω‐dibromo polydimethylsiloxane macroinitiator (Br‐PDMS‐Br). Br‐PDMS‐Br was synthesized through the esterification of α,ω‐hydroxypropyl polydimethylsiloxane and 2‐bromoisobutyryl bromide. The structures of the copolymers were confirmed by proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The copolymers showed reversible aggregation in response to temperature cycles with a lower critical solution temperature (LCST) between 61 and 66 °C, as determined by ultraviolet‐visible spectrophotometry and dynamic light scattering. The LCST values increased in proportion to the length of the hydrophilic block and were lower than that of the POEGMA homopolymer. The self‐assembly behavior of the copolymers in aqueous solution was investigated by fluorescence spectroscopy and transmission electron microscopy. The critical micelle concentration value (1.08–0.26 10?6 mol L?1) decreased as the length of the POEGMA chain increased. The POEGMA‐PDMS‐POEGMA copolymers can easily self‐assemble into spherical micelles in aqueous solution. Such biocompatible block copolymers may be attractive candidates as ‘‘smart'' thermo‐responsive drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2684‐2691  相似文献   

7.
Well‐defined multicyclic polystyrenes are prepared in two steps. The first step is the preparation of a cyclic difunctional polystyrene by the reaction of α,ω‐dilithiopolystyrene chains with 1,3‐bis(phenylethenyl)benzene. Then, this product is covalently grafted to poly(chloromethylstyrene) chains leading to the formation of a high molar mass product containing linear and cyclic parts. As a model reaction and to optimize the previous reaction, a study of coupling of the linear difunctional model polystyrene with poly(chloromethylstyrene) is performed leading to grafted polystyrene. The grafted products are analyzed by size‐exclusion chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and liquid chromatography at the exclusion‐adsorption transition point. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2723–2730, 2001  相似文献   

8.
An α,ω‐diene containing hydroxyl groups was prepared from plant oil‐derived platform chemicals. The acyclic diene metathesis copolymerization (ADMET) of this monomer with a phosphorus‐containing α,ω‐diene (DOPO II), also plant oil derived, afforded a series of phosphorus containing linear polyesters, which have been fully characterized. The backbone hydroxyls of these polyesters have been acrylated and radically polymerized to produce crosslinked polymers. The thermomechanical and mechanical properties, the thermal stability, and the flame retardancy of these phosphorus‐based thermosets have been studied. Moreover, methyl 10‐undecenoate has been used as chain stopper in selected ADMET polymerizations to study the effect of the prepolymers' molecular weights on the different properties of the final materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1649–1660, 2010  相似文献   

9.
A new strategy is developed to prepare both α,ω‐dithiol and α,ω‐divinyl linear telechelic polythiolether oligomers by visible light induced thiol‐ene chemistry in the presence of a fac‐Ir(ppy)3 photoredox catalyst. Polythiolether oligomers of well‐defined end groups and controlled molecular weights have been successfully synthesized at varying monomer molar ratios of 1,4‐benzenedimethanethiol (BDMT) to diethylene glycol divinyl ether (DEGVE). 1H NMR and MALDI‐TOF MS analyses demonstrate that as‐prepared polythiolethers possess high end‐group fidelity, which is further supported by the successful polyaddition of polythiolethers bearing α,ω‐dithiol and α,ω‐divinyl groups. For example, with the α,ω‐dithiol‐ (Mn = 1900 g mol?1, PDI = 1.25) and α,ω‐divinyl‐terminated (Mn = 2000 g mol?1, PDI = 1.29) polythiolethers as macromonomers, the molecular weight of resulting polythiolether is up to 7700 g mol?1 with PDI as 1.67. The reactivity of the terminal thiol group is further confirmed by the addition reaction with N‐(1‐pyrenyl)maleimide. UV‐vis spectra and fluorescene measurements suggest that fac‐Ir(ppy)3 undergo a redox quenching process reacted with BDMT to generate thiyl free radicals. With these results, the mechanism of the thiol‐ene reaction catalyzed by photoredox catalyst is proposed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 740–749  相似文献   

10.
Dihydridocarbonyltris(triphenylphosphine)ruthenium catalyzes the regiospecific anti‐Markovnikov addition of an ortho C? H bond of benzophenone across the C? C double bonds of α,ω‐bis(trimethylsilyloxy)copoly(dimethylsiloxane/vinylmethylsiloxane) (99:1), α,ω‐bis(vinyldimethylsilyloxy)poly(dimethylsiloxane), and 1,3‐divinyltetramethyldisiloxane to yield α,ω‐bis(trimethylsilyloxy)copoly[dimethylsiloxane/2‐(2′‐benzophenonyl)ethylmethylsiloxane]), α,ω‐bis[2‐(2′‐benzophenonyl)ethyldimethylsilyloxy]poly(dimethylsiloxane), and 1,3‐bis[2‐(2′‐benzophenonyl)ethyl]tetramethyldisiloxane, respectively. These materials have been characterized with 1H, 13C, and 29Si NMR and IR spectroscopy. Their molecular weight distributions have been determined by gel permeation chromatography. The thermal stability of the polymers has been measured by thermogravimetric analysis, and their glass‐transition temperatures (Tg's) have been determined by differential scanning calorimetry. The molecular weight distribution, thermal stability, and Tg's of the modified polysiloxanes are similar to those of the precursor polymers. The molecular weights of these materials can be significantly increased via heating to 300 °C for 1 h. This may be due to crosslinking, by pyrocondensation, of pendant anthracene groups, which are produced by the pyrolysis of the attached ortho‐alkyl benzophenones. UV spectroscopy of the pyrolysate of 1,3‐bis[2‐(2′‐benzophenonyl)ethyl]tetramethyldisiloxane has confirmed the presence of pendant anthracene groups. Thermal crosslinking by the pyrocondensation of pendant anthracene groups has been verified by the pyrolysis of α,ω‐bis(trimethylsilyloxy)copoly[dimethylsiloxane/2‐(9′‐anthracenyl)ethylmethylsiloxane] (97:3). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5514–5522, 2004  相似文献   

11.
Diorcinols and related prenylated diaryl ethers were reported to exhibit activity against methicillin-resistant clinical isolates of Staphylococcus aureus (MRSA). Within these lines, we report the first total synthesis of diorcinol D, I, J, the proposed structure of verticilatin and recently isolated antibacterial diaryl ether by using an efficient and highly divergent synthetic strategy. These total syntheses furnish the diaryl ethers in only five to seven steps employing a Pd-catalyzed diaryl ether coupling as the key step. The total synthesis led to the structural revision of the natural product verticilatin, which has been isolated from a plant pathogenic fungus. Furthermore, these structures were tested in order to determine their antibacterial activities against different MRSA strains as well as further Gram-positive and -negative bacteria.  相似文献   

12.
A single‐step route to telechelic polyethylene (PE) is enabled by selective insertion polymerization. PdII‐catalyzed copolymerization of ethylene and 2‐vinylfuran (VF) generates α,ω‐di‐furan telechelic polyethylene. Orthogonally reactive exclusively in‐chain anhydride groups are formed by terpolymerization with carbic anhydride. Combined experimental and theoretical DFT studies reveal the key for this direct approach to telechelics to be a match of the comonomers’ different electronics and bulk. Identified essential features of the comonomer are that it is an electron‐rich olefin that forms an insertion product stabilized by an additional interaction, namely a π–η3 interaction for the case of VF.  相似文献   

13.
This paper presents the synthesis of some alkyl or aryl pyridazinyl ethers from 2‐alkyl‐4‐halo‐5‐hydroxy‐and 2‐alkyl‐4,5‐dichloropyridazin‐3(2H)‐ones or 3,6‐dichloropyridazine. Reaction of 2‐alkyl‐4‐halo‐5‐hydroxypyridazin‐3(2H)‐ones 1 with 1,2‐dibromoethane or 1,3‐dibromopropane gave the corresponding monopyridazin‐5‐yl ethers 2 and α,ω‐[di(pyridazin‐5‐oxy)]alkanes 3 . Treatment of 4 with 4‐substituted‐phenol afforded 5‐(4‐substituted‐phenoxy)‐2‐(4‐substituted‐phenoxymethyl) derivatives 5 . Reaction of 2‐alkyl‐4,5‐dichloro derivatives 7 with 1 gave the corresponding di(pyridazin‐5‐yl) ethers 8 in good yields. Compound 10 was reacted with catechol to give monopyridazin‐3‐yl ether 11 and/or di(pyridazin‐3‐yl) ether 12 . Also we described the results for the reaction of 2‐alkyl‐4‐chloro‐5‐(4‐substituted‐phenoxy)pyridazin‐3(2H)‐ones with nucleophiles.  相似文献   

14.
Living radical polymerization of 2‐methoxyethyl acrylate (MEA) was achieved by single‐electron‐transfer/degenerative transfer mediated living radical polymerization (SET‐DTLRP) in water catalyzed by sodium dithionate. The poly(2‐methoxyethyl acrylate) is an amphiphilic polymer with a hydrophobic part (polyethylene chain) and a mildly hydrophilic tail. The plots of number‐average molecular weight versus conversion and ln{[M]0/[M]} versus time are linear, indicating a controlled polymerization. This method leads to the preparation of α,ω‐di(iodo) poly(2‐methoxyethyl acrylate)s (α,ω‐di(iodo)PMEA) macroinitiators that can be further functionalized. The molecular weight distributions were determined using a combination of three detectors (TriSEC): right‐angle light scattering (RALLS), a differential viscometer (DV) and refractive index (RI). The method studied in this work represents a possible route to prepare well‐tailored macromolecules made of 2‐methoxyethyl acrylate (biocompatible material) in an environmentally friendly reaction medium. To the best of our knowledge there is no previous report dealing with the synthesis of PMEA by any LRP approach in aqueous medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4454–4463, 2009  相似文献   

15.
Structurally related dibenzo‐16‐crown‐5 lariat ethers with pendant ester and ether groups are prepared. Structural variations within the series of alkyl lariat ether esters include changes in the O‐alkyl group, attachment site and nature of the lipophilic group, and length of the spacer, which connects the ester group to the polyether framework. Also synthesized are bis(crown ether) diesters with two dibenzo‐16‐crown‐5 or two dicyclohexano‐16‐crown‐5 units and two ester groups connected to each other by a linker of varying length. Synthetic strategies for the preparation of these lariat ethers with pendant ester‐ and ether‐containing side arms are described.  相似文献   

16.
Isomeric type 1 and 2 amino‐1,2,4‐triazoles condensed with thiazole, thiazine and thiazepine rings were synthesised from 5‐amino‐2,3‐dihydro‐1H‐1,2,4‐triazol‐3‐thione and α,ω‐dihaloalkanes through the 5‐amino‐3‐(ω‐haloalkylthio)‐1H‐1,2,4‐triazole intermediates. The reaction conditions leading to derivatives 1 and 2 , respectively, were determined. A general and safe method for the unambiguous differentiation between structures 1 and 2 was offered by their cmr spectra.  相似文献   

17.
The synthesis of perfectly alternating fluorinated polyimide–fluorinated polyhybridsiloxane block copolymers (FPI‐FPHSX) was achieved through polyhydrosilylation of α,ω‐diallylfluorinated polyimides (AT‐FPI) and α,ω‐dihydrosilane fluorinated–polyhybridsiloxanes (HT‐FPHSX). A series of three FPI‐FPHSX containing 15, 38, and 56 wt % of polyimide was synthesized and characterized by tuning the number‐average molecular weight either of the hard polyimide segments or of the soft polyhybridsiloxane segments. The influence of the soft and hard segment lengths on the behavior of the thermoplastic elastomer material was studied (hardness, surface tension, thermal stability). The FPI‐FPHSX block copolymers thermomechanical properties are also reported. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 200–207, 2004  相似文献   

18.
We synthesized the first N‐heterocyclic carbene (NHC) complexes of Schrock’s molybdenum imido alkylidene bis(triflate) complexes. Unlike existing bis(triflate) complexes, the novel 16‐electron complexes represent metathesis active, functional‐group‐tolerant catalysts. Single‐crystal X‐ray structures of two representatives of this novel class of Schrock catalysts are presented and reactivity is discussed in view of their structural peculiarities. In the presence of monomer (substrate), these catalysts form cationic species and can be employed in ring‐closing metathesis (RCM), ring‐opening metathesis polymerization (ROMP), as well as in the cyclopolymerization of α,ω‐diynes. Monomers containing functional groups, which are not tolerated by the existing variations of Schrock’s catalyst, e.g., sec‐amine, hydroxy, and carboxylic acid moieties, can be used. These catalysts therefore hold great promise in both organic and polymer chemistry, where they allow for the use of protic monomers.  相似文献   

19.
Novel α,ω‐divinyloligodiphenylsiloxanes (1,9‐divinyldecaphenylpentasiloxane, 1,7‐divinyloctaphenyltetrasiloxane, 1,5‐divinylhexaphenyltrisiloxane, and 1,3‐divinyltetraphenyldisiloxane) were prepared and copolymerized by Pt‐catalyzed hydrosilylation with α,ω‐dihydridopentasiloxanes. The molecular weights of the copolymers were measured with gel permeation chromatography, and their thermal properties were characterized with differential scanning calorimetry and thermogravimetric analysis. The polymers had high thermal stability in air and nitrogen. The oligomer and polymer structures were determined with 1H, 13C, 19F, and 29Si NMR and IR spectrometry. The molecular weights of the oligomers were measured with high‐resolution mass spectrometry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2155–2163, 2005  相似文献   

20.
Carbon tetrabromide (CBr4) catalyzes O-tert-butoxycarbonylation of functionalized phenols without any side reactions (bromination, addition of CBr3 to a double bond, and formation of symmetrical diaryl carbonates, cyclic carbonates, or carbonic-carbonic anhydrides). The parent phenols are regenerated from the O-t-Boc derivatives by the catalyst system CBr4-PPh3 without affecting other protecting groups (aryl alkyl ether, alkyl ester, and thioacetal) or competitive side reaction such as bromination, nitrene (from NO2) and alpha,alpha-dibromoolefine (with CHO/COMe) formation, and transesterification (with CO2Me/Et) taking place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号