首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The metal-induced self-assembly of a resorcin[4]arene derivative 1 that has four pyridine units as pendent groups and two equivalents of [M(dppp)(OTf)(2)] (M=Pd, Pt) results in a dynamic equilibrium between an interclipped supramolecular capsule 3 and an intraclipped bowl 4 in nitromethane, although the interclipped capsule 3 is formed as a sole adduct in chloroform/methanol and the intraclipped bowl 4 is formed exclusively in an aqueous phase. This demonstrates how metal-induced self-assembly can be tuned by subtle changes in the solvent system. The coexistence of the two structures in nitromethane was characterized by NMR spectroscopy and coldspray ionization mass spectrometry (CSI-MS). The crystal structure of the interclipped capsule 3 b, which is composed of two units of ligand 1 and four Pt(II) ions, reveals the capsule cavity to have nanoscale dimensions of 15x20 A. NMR spectra show that the dynamic equilibrium between 3 and 4 is dependent on concentration and temperature. Temperature-dependent (1)H NMR spectroscopy was carried out from 273 to 343 K to verify the thermodynamic parameters that control the dynamic equilibrium process; the conversion from the interclipped supramolecular capsule 3 a to the intraclipped bowl 4 a is entropically favored and enthalpically disfavored. The rotational barrier of the restricted rotation of pyridine units in the intraclipped bowl 4 was determined by line-shape analysis.  相似文献   

2.
Supramolecular polymers are a class of macromolecules stabilized by weak non‐covalent interactions. These self‐assembled aggregates typically undergo stimuli‐induced reversible assembly and disassembly. They thus hold great promise as so‐called functional materials. In this work, we present the design, synthesis, and responsive behavior of a short supramolecular oligomeric system based on two hetero‐complementary subunits. These “monomers” consist of a tetrathiafulvalene‐functionalized calix[4]pyrrole (TTF‐C[4]P) and a glycol diester‐linked bis‐2,5,7‐trinitrodicyanomethylenefluorene‐4‐carboxylate (TNDCF), respectively. We show that when mixed in organic solvents, such as CHCl3, CH2ClCH2Cl, and methylcyclohexane, supramolecular aggregation takes place to produce short oligomers stabilized by hydrogen bonding and donor–acceptor charge‐transfer (CT) interactions. The self‐associated materials were characterized by 1H NMR and UV/Vis/NIR absorption spectroscopy, as well as by concentration‐ and temperature‐dependent absorption spectroscopy and dynamic light scattering (DLS) analyses of both the monomeric and oligomerized species. The self‐associated system produced from TTF‐C[4]P and TNDCF exhibits a concentration‐dependent aggregation behavior typical of supramolecular polymers. Further support for the proposed self‐assembly came from theoretical calculations. The fluorescence emitting properties of TNDCF are quenched under conditions that promote the formation of supramolecular aggregates containing TTF‐C[4]P and TNDCF. This quenching effect has been utilized as a probe for the detection of substrates in the form of anions (i.e., chloride) and nitroaromatic explosives (i.e., 1,3,5‐trinitrobenzene). Specifically, the addition of these substrates to mixtures of TTF‐C[4]P and TNDCF produced a fluorescence “turn‐on” response.  相似文献   

3.
Easy access to discrete nanoclusters in metal‐folded single‐chain nanoparticles (metal‐SCNPs) and independent ultrafine sudomains in the assemblies via coordination‐driven self‐assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1H NMR, dynamic light scattering, and NMR diffusion‐ordered spectroscopy results demonstrate self‐assembly into metal‐SCNPs (>70% imidazole‐units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self‐assembly of metal‐SCNPs (pH 4.6–5.0) and shrinkage (pH 5.0–5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6–7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub‐5‐nm subdomains in metal‐SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media‐tunable discrete ultrafine interiors in metal‐SCNPs and assemblies have hence been achieved.  相似文献   

4.
ω‐Telechelic poly(p‐phenylene vinylene) species (PPVs) are prepared by living ring‐opening metathesis polymerization of a [2.2]paracyclophane‐1,9‐diene in the presence of Hoveyda–Grubbs 2nd generation initiator, with terminating agents based on N1,N3‐bis(6‐butyramidopyridin‐2‐yl)‐5‐hydroxyisophthalamide (Hamilton wedge), cyanuric acid, PdII–SCS‐pincer, or pyridine moieties installing the supramolecular motifs. The resultant telechelic polymers are self‐assembled into supramolecular block copolymers (BCPs) via metal coordination or hydrogen bonding and analyzed by 1H NMR spectroscopy. The optical properties are examined, whereby individual PPVs exhibit similar properties regardless of the nature of the end group. Upon self‐assembly, different behaviors emerge: the hydrogen‐bonding BCP behaves similarly to the parent PPVs whereas the metallosupramolecular BCP demonstrates a hypsochromic shift and a more intense emission owing to the suppression of aggregation. These results demonstrate that directional self‐assembly can be a facile method to construct BCPs with semiconducting networks, while combating solubility and aggregation.  相似文献   

5.
Supramolecular self‐assembly of 24 forklike mesogenic ligands and 12 transition metal ions led to the formation of giant spherical coordination complexes that exhibit liquid‐crystalline (LC) phases. Self‐healing LC supramolecular gels were also obtained through the introduction of these LC nanostructured supramolecular giant spherical complexes into dynamic covalent networks formed by cross‐linkers and bifunctional polymers. The giant spherical structures of the PdII complexes with 72 rodlike moieties on the periphery were characterized by NMR, diffusion‐ordered NMR spectroscopy, and mass spectrometry. These complexes are stable and exhibit lyotropic LC behavior, while the mesogenic ligands show thermotropic LC properties. The self‐assembled LC structures of the spherical complexes can be tuned by the length of the rodlike moieties.  相似文献   

6.
Three new molecular building blocks 1 a – c for supramolecular polymerization are described that feature two dipolar merocyanine dyes tethered by p‐xylylene spacers. Concentration‐ and temperature‐dependent UV/Vis spectroscopy in chloroform combined with dynamic light scattering, capillary viscosimetry and atomic force microscopy investigations were applied to elucidate the mechanistic features of the self‐assembly of these strongly dipolar dyes. Our detailed studies reveal that the self‐assembly is very pronounced for bis(merocyanines) 1 a , b bearing linear alkyl chains, but completely absent for bis(merocyanine) 1 c bearing sterically more bulky ethylhexyl substituents. Both temperature‐ and concentration‐dependent UV/Vis data provide unambiguous evidence for a cooperative self‐assembly process for bis(merocyanines) 1 a , b , which was analyzed in detail by the Meijer–Schenning–Van‐der‐Schoot model (applicable to temperature‐dependent data) and by the Goldstein–Stryer model (applicable to concentration‐dependent data). By combining both methods all parameters of interest to understand the self‐assembly process could be derived, including in particular the nucleus size (8–10 monomeric units), the cooperativity factor (ca. 0.006), and the nucleation and elongation constants of about 103 and 106 M ?1 in chloroform at room temperature, respectively.  相似文献   

7.
Schiff base macrocycle 1 , which has a crown ether like central pore, was combined with different alkali‐metal and ammonium salts in chloroform, resulting in one‐dimensional supramolecular aggregates. The ion‐induced self‐assembly was studied with solid‐state NMR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). It was found that the lengths and widths of the superstructures depend on the cation and counteranion of the salts. Among the salts being used, Na+ and NH4+ ions with BF4? ions showed the most impressive fibrous structures that can grow up to 1 μm in diameter and hundreds of microns in length. In addition, the size of the fibers can be controlled by the evaporation rate of the solvent. A new macrocycle with bulky triptycenyl substituents that prevent supramolecular assembly was prepared and did not display any nanofibers with alkali‐metal ions in chloroform when studied with TEM.  相似文献   

8.
A facile high yield, self‐assembly process that leads to a terpyridine‐based, three‐dimensional, bis‐rhomboidal‐shaped, molecular wheel is reported. The desired coordination‐driven supramolecular wheel involves eight structurally distorted tristerpyridine (tpy) ligands possessing a 60° angle between the adjacent tpy units and twelve Zn2+ ions. The tpy ligand plays dual roles in the self‐assembly process: two are staggered at 180° to create the internal hub, while six produce the external rim. The wheel can be readily generated by mixing the tpy ligand and Zn2+ in a stoichiometric ratio of 2:3; full characterization is provided by ESI‐MS, NMR spectroscopy, and TEM imaging.  相似文献   

9.
A new host molecule consists of four terpyridine groups as the binding sites with zinc(II) ion and a copillar[5]arene incorporated in the center as a spacer to interact with guest molecule was designed and synthesized. Due to the 120 ° angle of the rigid aromatic segment, a cross‐linked dimeric hexagonal supramolecular polymer was therefore generated as the result of the orthogonal self‐assembly of metal–ligand coordination and host–guest interaction. UV/Vis spectroscopy, 1H NMR spectroscopy, viscosity and dynamic light‐scattering techniques were employed to characterize and understand the cross‐linking process with the introduction of zinc(II) ion and guest molecule. More importantly, well‐defined morphology of the self‐assembled supramolecular structure can be tuned by altering the adding sequence of the two components, that is, the zinc(II) ion and the guest molecule. In addition, introduction of a competitive ligand suggested the dynamic nature of the supramolecular structure.  相似文献   

10.
A 1,1′‐binaphthyl‐based bis(pyridine) ligand ( 1 ) was prepared in racemic and enantiomerically pure form to study the formation of [Pd2( 1 )4] complexes upon coordination to palladium(II) ions with regard to the degree of chiral self‐sorting. The self‐assembly process proceeds in a highly selective narcissistic self‐recognition manner to give only homochiral supramolecular M2L4 cages, which were characterized by ESI‐MS, NMR, and electronic circular dichroism (ECD) spectroscopy, as well as by single‐crystal XRD analysis.  相似文献   

11.
A polypseudorotaxane (PPR) comprising γ‐cyclodextrin (γ‐CD) as host molecules and poly(N‐isopropylacrylamide) (PNIPAM) as a guest polymer is prepared via self‐assembly in aqueous solution. Due to the bulky pendant isopropylamide group, PNIPAM exhibits size‐selectivity toward self‐assembly with α‐, β‐, and γ‐CDs. It can fit into the cavity of γ‐CD to give rise to a PPR, but cannot pass through α‐CD and β‐CD under the same conditions. The ratio of the number of γ‐CD molecules to entrapped NIPAM repeat units is kept at 1:2.2 or 1:2.4, determined by 1H NMR spectroscopy and TGA analysis, respectively, indicating that there are more than 2 but less than 3 NIPAM repeat units included by one γ‐CD molecule. This finding opens new avenues to PPR‐based supramolecular polymers to be used as solid, stimuli‐responsive materials.  相似文献   

12.
A systematic study of the influence of solvent and the size of C3‐symmetric discotics on their supramolecular polymerization mechanism is presented. The cooperativity of the self‐assembly of the reported compounds is directly related to their gelation ability. The two series of C3‐symmetric discotics investigated herein are based on benzene‐1,3,5‐tricarboxamides (BTAs) and oligo(phenylene ethynylene)‐based tricarboxamides (OPE? TAs) that are peripherally decorated with achiral ( 1 a and 2 a ) or chiral N‐(2‐aminoethyl)‐3,4,5‐trialkoxybenzamide units ( 1 b and 2 b ). The supramolecular polymerization of compounds 1 a , b and 2 a , b has been exhaustively investigated in a number of solvents and by using various techniques: variable‐temperature circular dichroism (VT‐CD) spectroscopy, concentration‐dependent 1H NMR spectroscopy, and isothermal titration calorimetry (ITC). The supramolecular polymerization mechanism of compounds 2 is highly cooperative in solvents such as methylcyclohexane and toluene and is isodesmic in CHCl3. Unexpectedly, chiral compound 1 b is practically CD‐silent, in contrast with previously reported BTAs. ITC measurements in CHCl3 demonstrated that the supramolecular polymerization of BTA 1 a is isodesmic. These results confirm the strong influence of the π‐surface of the central aromatic core of the studied discotic and the branched nature of the peripheral side chains on the supramolecular polymerization. The gelation ability of these organogelators is negated in CHCl3, in which the supramolecular polymerization mechanism is isodesmic.  相似文献   

13.
Employing bis(p‐sulfonatocalix[4]arenes) (bisSC4A) and N′,N′′hexamethylenebis(1‐methyl‐4,4′‐bipyridinium) (HBV4+) as monomer building blocks, the assembly morphologies can be modulated by cucurbit[n]uril (CB[n]) (n=7, 8), achieving the interesting topological conversion from cyclic oligomers to linear polymers. The binary supramolecular assembly fabricated by HBV4+ and bisSC4A units, forms an oligomeric structure, which was characterized by NMR spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), dynamic light scattering (DLS), isothermal titration calorimetry (ITC), and gel permeation chromatography (GPC) experiments. The ternary supramolecular polymer participated by CB[8] is constructed on the basis of host–guest interactions by bisSC4A and the [2]pseudorotaxane HBV4+@CB[8], which is characterized by means of AFM, DLS, NMR spectroscopy, thermogravimetric analysis (TGA), UV/Vis spectroscopy, and elemental analysis. CB[n] plays vital roles in rigidifying the conformation of HBV4+, and reinforcing the host–guest inclusion of bisSC4A with HBV4+, which prompts the formation of a linear polymer. Moreover, the CB[8]‐participated ternary assembly could disassemble into the molecular loop HBV2+@CB[8] and free bisSC4A after reduction of HBV4+ to HBV2+, whereas the CB[7]‐based assembly remained unchanged after the reduction. CB[8] not only controlled the topological conversion of the supramolecular assemblies, but also improved the redox‐responsive assembly/disassembly property practically.  相似文献   

14.
The fusion of bowl‐shaped π‐conjugated corannulene units to anion‐responsive π‐conjugated dipyrrolyldiketone‐boron complexes resulted in new molecular materials with a unique self‐assembly capability. The bowl‐fused receptor with aliphatic tails could form both supramolecular gels and mesophases through π‐stacking interactions and also exhibited anion‐responsive characteristics. The presence of the π‐bowl unit not only afforded enhanced self‐assembly capability both in solution and in the mesophases, as evidenced by gelation experiments and phase‐transition profiles, but also enhanced intrinsic charge‐carrier mobility.  相似文献   

15.
A homotelechelic macroligand bearing two 2,2′:6′,2″‐terpyridin‐4′‐yl units, as chain ends, is used as building block for the preparation of a linear metallo‐supramolecular chain‐extended polymer. The macroligand has been prepared by nitroxide‐mediated polymerization (NMP) of styrene using a bis‐terpyridine‐functionalized NMP initiator. The controlled character of the NMP process has been confirmed by detailed characterization of the polymer by size‐exclusion chromatography, nuclear magnetic resonance spectroscopy as well as mass spectrometry. Subsequently, the self‐assembly with FeII ions into the chain‐extended metallopolymer and the disassembly thereof, in the presence of a strong competitive ligand, has been studied by UV–vis absorption spectroscopy and diffusion‐ordered NMR spectroscopy. The reversibility of the formation of the metallo‐supramolecular material, when addressed by external stimuli, could be proven. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Here, we present the one‐step synthesis of 2‐(m‐difluorophenyl)‐2‐oxazoline and its use as a monomer for microwave‐assisted statistical cationic ring‐opening copolymerizations (CROP). Well‐defined amphiphilic gradient copolymers, as evidenced by the polymerization kinetics, were prepared using 2‐ethyl‐2‐oxazoline as comonomer and methyl tosylate as initiator in nitromethane at 140 °C. The resulting gradient copolymers (DP = 60 and 100) were characterized by means of size exclusion chromatography and 1H NMR spectroscopy. In the second part, we focus on a detailed study of the self‐assembly of the copolymers in aqueous solution using atomic force microscopy and dynamic light scattering. Both methods revealed the self‐assembly of the gradient copolymers into spherical micelles. To quantify the influence of the fluorine atoms and the monomer distribution on the self‐assembly, a comparative study with gradient copolymers of 2‐phenyl‐2‐oxazoline and 2‐ethyl‐2‐oxazoline was performed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5859–5868, 2008  相似文献   

17.
A three‐dimensional DNA hydrogel was generated by self‐assembly of short linear double‐stranded DNA (dsDNA) building blocks equipped with sticky ends. The resulting DNA hydrogel is thermoresponsive and the length of the supramolecular dsDNA structures varies with temperature. The average diffusion coefficients of the supramolecular dsDNA structures formed by self‐assembly were determined by diffusion‐ordered NMR spectroscopy (DOSY NMR) for temperatures higher than 60 °C. Temperature‐dependent rheological measurements revealed a gel point of 42±1 °C. Below this temperature, the resulting material behaved as a true gel of high viscosity with values for the storage modulus G′ being significantly larger than that for the loss modulus G′′. Frequency‐dependent rheological measurements at 20 °C revealed a mesh size (ξ) of 15 nm. AFM analysis of the diluted hydrogel in the dry state showed densely packed structures of entangled chains, which are also expected to contain multiple interlocked rings and catenanes.  相似文献   

18.
The self‐assembly and characterization of water‐soluble calix[4]arene‐based molecular capsules ( 1?2 ) is reported. The assemblies are the result of ionic interactions between negatively charged calix[4]arenes 1 a and 1 b , functionalized at the upper rim with amino acid moieties, and a positively charged tetraamidiniumcalix[4]arene 2 . The formation of the molecular capsules is studied by 1H NMR spectroscopy, ESI mass spectrometry (ESI‐MS), and isothermal titration calorimetry (ITC). A molecular docking protocol was used to identify potential guest molecules for the self‐assembled capsule 1 a?2 . Experimental guest encapsulation studies indicate that capsule 1 a?2 is an effective host for both charged (N‐methylquinuclidinium cation) and neutral molecules (6‐amino‐2‐methylquinoline) in water.  相似文献   

19.
Self‐assembly and characterization of novel heterodimeric diphosphine capsules formed by multiple ionic interactions and composed of one tetracationic diphosphine ligand and one complementary tetraanionic calix[4]arene are described. Encapsulation of a palladium atom within a diphosphine capsule is achieved successfully by using the metal complex of the tetracationic diphosphine ligand for the assembly process. In this templated approach to metal encapsulation, the transition‐metal complex is an integrated part of the capsule with the transition metal located inside the capsule and is not involved in the assembly process. We present two approaches for capsule assembly by mixing solutions of the precharged building blocks in methanol and mixing solutions of the neutral building blocks in methanol. The scope of the diphosphine capsules and the metallodiphosphine capsules is easily extended by applying tetracationic diphosphine ligands with different backbones (ethylene, diphenyl ether, and xanthene) and cationic binding motifs (p‐C6H4‐CH2‐ammonium, m‐C6H4‐ammonium, and m‐C6H4‐guanidinium). These tetracationic building blocks with different flexibilities and shapes readily associate into capsules with the proper capsular structure, as is indicated by 1H NMR spectroscopy, 1D NOESY, ESI‐MS, and modeling studies.  相似文献   

20.
The social self‐sorting supramolecular assembly is described by non‐covalent interactions among four organic components. Toward this goal, a series of self‐sorting systems have been investigated by mixing two or three different compounds; naphthyl‐bridged bis(α‐cyclodextrin), N,N′‐dioctyl‐4,4′‐bipyridinium, 2,6‐dihydroxynaphthalene, and cucurbit[8]uril. The influence of alkyl chains of viologen derivatives and the binding abilities of these systems have also been studied. Their integrative self‐sorting led to the exclusive formation of the purple supramolecular heterowheel polypseudorotaxane. The heterowheel polypseudorotaxane is a thermodynamically stable self‐sorted product, and consists of two different macrocycles with three sorts of different non‐covalent interactions. Its structure was established by NMR spectroscopy and UV/Vis absorption spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light‐scattering (DLS), diffusion‐ordered spectroscopy (DOSY), and viscosity measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号