首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple and efficient numerical method for solving the advection equation on the spherical surface is presented. To overcome the well‐known ‘pole problem’ related to the polar singularity of spherical coordinates, the space discretization is performed on a geodesic grid derived by a uniform triangulation of the sphere; the time discretization uses a semi‐Lagrangian approach. These two choices, efficiently combined in a substepping procedure, allow us to easily determine the departure points of the characteristic lines, avoiding any computationally expensive tree‐search. Moreover, suitable interpolation procedures on such geodesic grid are presented and compared. The performance of the method in terms of accuracy and efficiency is assessed on two standard test cases: solid‐body rotation and a deformation flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is devoted to the development of accurate high‐order interpolating schemes for semi‐Lagrangian advection. The characteristic‐Galerkin formulation is obtained by using a semi‐Lagrangian temporal discretization of the total derivative. The semi‐Lagrangian method requires high‐order interpolators for accuracy. A class of ??1 finite‐element interpolating schemes is developed and two semi‐Lagrangian methods are considered by tracking the feet of the characteristic lines either from the interpolation or from the integration nodes. Numerical stability and analytical results quantifying the amount of artificial viscosity induced by the two methods are presented in the case of the one‐dimensional linear advection equation, based on the modified equation approach. Results of test problems to simulate the linear advection of a cosine hill illustrate the performance of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Time‐splitting technique applied in the context of the semi‐Lagrangian semi‐implicit method allows the use of extended time steps mainly based on physical considerations and reduces the number of numerical operations at each time step such that it is approximately proportional to the number of the points of spatial grid. To control time growth of the additional truncation errors, the standard stabilizing correction method is modified with no penalty for accuracy and efficiency of the algorithm. A linear analysis shows that constructed scheme is stable for time steps up to 2h. Numerical integrations with actual atmospheric fields of pressure and wind confirm computational efficiency, extended stability and accuracy of the proposed scheme. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
5.
This paper describes the development and application of a novel mesh generator for the flow analysis of turbomachinery blades. The proposed method uses a combination of structured and unstructured meshes, the former in the radial direction and the latter in the axial and tangential directions, in order to exploit the fact that blade‐like structures are not strongly three‐dimensional since the radial variation is usually small. The proposed semi‐structured mesh formulation was found to have a number of advantages over its structured counterparts. There is a significant improvement in the smoothness of the grid spacing and also in capturing particular aspects of the blade passage geometry. It was also found that the leading‐ and trailing‐edge regions could be discretized without generating superfluous points in the far field, and that further refinements of the mesh to capture wake and shock effects were relatively easy to implement. The capability of the method is demonstrated in the case of a transonic fan blade for which the steady state flow is predicted using both structured and semi‐structured meshes. A totally unstructured mesh is also generated for the same geometry to illustrate the disadvantages of using such an approach for turbomachinery blades. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
The weak Lagrange–Galerkin finite element method for the two‐dimensional shallow water equations on adaptive unstructured grids is presented. The equations are written in conservation form and the domains are discretized using triangular elements. Lagrangian methods integrate the governing equations along the characteristic curves, thus being well suited for resolving the non‐linearities introduced by the advection operator of the fluid dynamics equations. An additional fortuitous consequence of using Lagrangian methods is that the resulting spatial operator is self‐adjoint, thereby justifying the use of a Galerkin formulation; this formulation has been proven to be optimal for such differential operators. The weak Lagrange–Galerkin method automatically takes into account the dilation of the control volume, thereby resulting in a conservative scheme. The use of linear triangular elements permits the construction of accurate (by virtue of the second‐order spatial and temporal accuracies of the scheme) and efficient (by virtue of the less stringent Courant–Friedrich–Lewy (CFL) condition of Lagrangian methods) schemes on adaptive unstructured triangular grids. Lagrangian methods are natural candidates for use with adaptive unstructured grids because the resolution of the grid can be increased without having to decrease the time step in order to satisfy stability. An advancing front adaptive unstructured triangular mesh generator is presented. The highlight of this algorithm is that the weak Lagrange–Galerkin method is used to project the conservation variables from the old mesh onto the newly adapted mesh. In addition, two new schemes for computing the characteristic curves are presented: a composite mid‐point rule and a general family of Runge–Kutta schemes. Results for the two‐dimensional advection equation with and without time‐dependent velocity fields are illustrated to confirm the accuracy of the particle trajectories. Results for the two‐dimensional shallow water equations on a non‐linear soliton wave are presented to illustrate the power and flexibility of this strategy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
A semi‐implicit, semi‐Lagrangian, mixed finite difference–finite volume model for the shallow water equations on a rotating sphere is introduced and discussed. Its main features are the vectorial treatment of the momentum equation and the finite volume approach for the continuity equation. Pressure and Coriolis terms in the momentum equation and velocity in the continuity equation are treated semi‐implicitly. Moreover, a splitting technique is introduced to preserve symmetry of the numerical scheme. An alternative asymmetric scheme (without splitting) is also introduced and the efficiency of both is discussed. The model is shown to be conservative in geopotential height and unconditionally stable for 0.5≤θ≤1. Numerical experiments on two standard test problems confirm the performance of the model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Numerical oscillation has been an open problem for high‐order numerical methods with increased local degrees of freedom (DOFs). Current strategies mainly follow the limiting projections derived originally for conventional finite volume methods and thus are not able to make full use of the sub‐cell information available in the local high‐order reconstructions. This paper presents a novel algorithm that introduces a nodal value‐based weighted essentially non‐oscillatory limiter for constrained interpolation profile/multi‐moment finite volume method (CIP/MM FVM) (Ii and Xiao, J. Comput. Phys., 222 (2007), 849–871) as an effort to pursue a better suited formulation to implement the limiting projection in schemes with local DOFs. The new scheme, CIP‐CSL‐WENO4 scheme, extends the CIP/MM FVM method by limiting the slope constraint in the interpolation function using the weighted essentially non‐oscillatory (WENO) reconstruction that makes use of the sub‐cell information available from the local DOFs and is built from the point values at the solution points within three neighboring cells, thus resulting a more compact WENO stencil. The proposed WENO limiter matches well the original CIP/MM FVM, which leads to a new scheme of high accuracy, algorithmic simplicity, and computational efficiency. We present the numerical results of benchmark tests for both scalar and Euler conservation laws to manifest the fourth‐order accuracy and oscillation‐suppressing property of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
An accurate finite‐volume Eulerian Lagrangian localized adjoint method (ELLAM) is presented for solving the one‐dimensional variable coefficients advection dispersion equation that governs transport of solute in porous medium. The method uses a moving grid to define the solution and test functions. Consequently, the need for spatial interpolation, or equivalently numerical integration, which is a major issue in conventional ELLAM formulations, is avoided. After reviewing the one‐dimensional method of ELLAM, we present our strategy and detailed calculations for both saturated and unsaturated porous medium. Numerical results for a constant‐coefficient problem and a variable‐coefficient problem are very close to analytical and fine‐grid solutions, respectively. The strength of the developed method is shown for a large range of CFL and grid Peclet numbers. Copyright 2004 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a semi‐implicit numerical model for two‐ and three‐dimensional free‐surface flows will be formulated in such a fashion as to intrinsically account for subgrid bathymetric details. It will be shown that with the proposed subgrid approach the model accuracy can be substantially improved without increasing the corresponding computational effort. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The finite‐element, semi‐implicit, and semi‐Lagrangian methods are used on unstructured meshes to solve the nonlinear shallow‐water system. Several ??1 approximation schemes are developed for an accurate treatment of the advection terms. The employed finite‐element discretization schemes are the PP1 and P2P1 pairs. Triangular finite elements are attractive because of their flexibility for representing irregular boundaries and for local mesh refinement. By tracking the characteristics backward from both the interpolation and quadrature nodes and using ??1 interpolating schemes, an accurate treatment of the nonlinear terms and, hence, of Rossby waves is obtained. Results of test problems to simulate slowly propagating Rossby modes illustrate the promise of the proposed approach in ocean modelling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in some sense can well recover the superconvergence rate of the normal velocity. In the second part of the work, the MPFA L‐method with homogeneous media is studied. A systematic concept and geometrical interpretations of the L‐method are given and illustrated, which yield more insight into the L‐method. Finally, we apply the MPFA L‐method for two‐phase flow in porous media on different quadrilateral grids and compare its numerical results for the pressure and saturation with the results of the two‐point flux approximation method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The fully non‐linear free‐surface flow over a semi‐circular bottom obstruction was studied numerically in two dimensions using a mixed Eulerian–Lagrangian formulation. The problem was solved in the time domain that allows the prediction of a number of transient phenomena, such as the generation of upstream advancing solitary waves, as well as the simulation of wave breaking. A parametric study was performed for a range of values of the depth‐based Froude number up to 2.5 and non‐dimensional obstacle heights, α up to 0.9. When wave breaking does not occur, three distinct flow regimes were identified: subcritical, transcritical and supercritical. When breaking occurs it may be of any type: spilling, plunging or surging. In addition, for values of the Froude number close to 1, the upstream solitary waves break. A systematic study was undertaken to define the boundaries of each type of breaking and non‐breaking pattern and to determine the drag and lift coefficients, free‐surface profile characteristics and transient behavior. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
The parallel implementation of an unstructured‐grid, three‐dimensional, semi‐implicit finite difference and finite volume model for the free surface Navier–Stokes equations (UnTRIM ) is presented and discussed. The new developments are aimed to make the code available for high‐performance computing in order to address larger, complex problems in environmental free surface flows. The parallelization is based on the mesh partitioning method and message passing and has been achieved without negatively affecting any of the advantageous properties of the serial code, such as its robustness, accuracy and efficiency. The key issue is a new, autonomous parallel streamline backtracking algorithm, which allows using semi‐Lagrangian methods in decomposed meshes without compromising the scalability of the code. The implementation has been carefully verified not only with simple, abstract test cases illustrating the application domain of the code but also with advanced, high‐resolution models presently applied for research and engineering projects. The scheme performance and accuracy aspects are researched and discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A hybrid Eulerian‐Lagrangian particle‐in‐cell–type numerical method is developed for the solution of advection‐dominated flow problems. Particular attention is given over to the high‐order transfer of flow properties from the particles to the grid. For smooth flows, the method presented is of formal high‐order accuracy in space. The method is applied to solve the nonlinear shallow water equations resulting in a new, and novel, shock capturing shallow water solver. The approach is able to simulate complex shallow water flows, which can contain an arbitrary number of discontinuities. Both trivial and nontrivial bottom topography is considered, and it is shown that the new scheme is inherently well balanced, exactly satisfying the ‐property. The scheme is verified against several one‐dimensional benchmark shallow water problems. These include cases that involve transcritical flow regimes, shock waves, and nontrivial bathymetry. In all the test cases presented, very good results are obtained.  相似文献   

16.
An immersed smoothed point interpolation method using 3‐node triangular background cells is proposed to solve 2D fluid‐structure interaction problems for solids with large deformation/displacement placed in incompressible viscous fluid. In the framework of immersed‐type method, the governing equations can be decomposed into 3 parts on the basis of the fictitious fluid assumption. The incompressible Navier‐Stokes equations are solved using the semi‐implicit characteristic‐based split scheme, and solids are simulated using the newly developed edge‐based smoothed point interpolation method. The fictitious fluid domain can be used to calculate the coupling force. The numerical results show that immersed smoothed point interpolation method can avoid remeshing for moving solid based on immersed operation and simulate the contact phenomenon without an additional treatment between the solid and the fluid boundary. The influence from information transfer between solid domain and fluid domain on fluid‐structure interaction problems has been investigated. The numerical results show that the proposed interpolation schemes will generally improve the accuracy for simulating both fluid flows and solid structures.  相似文献   

17.
A new numerical method for particle tracking (Lagrangian particle advection) on 2‐D unstructured grids with triangular cells is presented and tested. This method combines key attributes of published methods, including streamline closure for steady flows and local mass conservation (uniformity preservation). The subgrid‐scale velocity reconstruction is linear, and this linear velocity field is integrated analytically to obtain particle trajectories. A complete analytic solution to the 2‐D system of ordinary differential equations (ODEs) governing particle trajectories within a grid cell is provided. The analytic solution to the linear system of locally mass‐conserving constraints that must be enforced to obtain the coefficients in the ODEs is also provided. Numerical experiments are performed to demonstrate that the new method has substantial advantages in accuracy over previously published methods and that it does not suffer from unphysical particle clustering. The method can be used not only in particle‐tracking applications but also as part of a semi‐Lagrangian advection scheme.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we formulate a level set method in the framework of finite elements‐semi‐Lagrangian methods to compute the solution of the incompressible Navier–Stokes equations with free surface. In our formulation, we use a quasi‐monotone semi‐Lagrangian scheme, which is both unconditionally stable and essentially non oscillatory, to compute the advective terms in the Navier–Stokes equations, the transport equation and the equation of the reinitialization stage for the level set function. The method we propose is quite robust and flexible with regard to the mesh and the geometry of the domain, as well as the magnitude of the Reynolds number. We illustrate the performance of the method in several examples, which range from a benchmark problem to test the volume conservation property of the method to the flow past a NACA0012 foil at high Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The problem of two‐dimensional tracer advection on the sphere is extremely important in modeling of geophysical fluids and has been tackled using a variety of approaches. A class of popular approaches for tracer advection include ‘incremental remap’ or cell‐integrated semi‐Lagrangian‐type schemes. These schemes achieve high‐order accuracy without the need for multistage integration in time, are capable of large time steps, and tend to be more efficient than other high‐order transport schemes when applied to a large number of tracers over a single velocity field. In this paper, the simplified flux‐form implementation of the Conservative Semi‐LAgrangian Multi‐tracer scheme (CSLAM) is reformulated using quadratic curves to approximate the upstream flux volumes and Gaussian quadrature for integrating the edge flux. The high‐order treatment of edge fluxes is motivated because of poor accuracy of the CSLAM scheme in the presence of strong nonlinear shear, such as one might observe in the midlatitudes near an atmospheric jet. Without the quadratic treatment of upstream edges, we observe at most second‐order accuracy under convergence of grid resolution, which is returned to third‐order accuracy under the improved treatment. A shallow‐water barotropic instability also reveals clear evidence of grid imprinting without the quadratic correction. Consequently, these tests reveal a problem that might arise in tracer transport near nonlinearly sheared regions of the real atmosphere, particularly near cubed‐sphere panel edges. Although CSLAM is used as the foundation for this analysis, the conclusions of this paper are applicable to the general class of incremental remap schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A conservative, single‐cell‐based semi‐Lagrangian transport model is proposed in this paper. Using multi‐moment concept, an additional moment, i.e. volume‐integrated average (VIA), is treated as the model variable besides the point value (PV) updated in the traditional semi‐Lagrangian schemes. A quadratic interpolation function is constructed based on local degrees of freedom defined within each single cell. The PV moment is advanced by the semi‐Lagrangian formulation, whereas the VIA moment is updated by a finite volume formulation to rigorously ensure the numerical conservation. The numerical fluxes are computed from the PV moments defined along the boundary edges of the control volume. The scheme is extended to the spherical geometry through the application of the cubed‐sphere grid that eliminates the polar singularity in the conventional longitude/latitude coordinates by using the quasi‐uniform grid spacing covering the whole sphere. The single‐cell‐based scheme is well suited for the treatment of the connections between different patches. A simple quasi‐monotone limiter to the PV moment is applied to suppress non‐physical oscillations. The proposed scheme has been validated via representative benchmark tests and the performance is competitive to other existing transport schemes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号