共查询到20条相似文献,搜索用时 15 毫秒
1.
Maria Francesca Carfora 《国际流体数值方法杂志》2007,55(2):127-142
A simple and efficient numerical method for solving the advection equation on the spherical surface is presented. To overcome the well‐known ‘pole problem’ related to the polar singularity of spherical coordinates, the space discretization is performed on a geodesic grid derived by a uniform triangulation of the sphere; the time discretization uses a semi‐Lagrangian approach. These two choices, efficiently combined in a substepping procedure, allow us to easily determine the departure points of the characteristic lines, avoiding any computationally expensive tree‐search. Moreover, suitable interpolation procedures on such geodesic grid are presented and compared. The performance of the method in terms of accuracy and efficiency is assessed on two standard test cases: solid‐body rotation and a deformation flow. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
2.
3.
A new numerical method for particle tracking (Lagrangian particle advection) on 2‐D unstructured grids with triangular cells is presented and tested. This method combines key attributes of published methods, including streamline closure for steady flows and local mass conservation (uniformity preservation). The subgrid‐scale velocity reconstruction is linear, and this linear velocity field is integrated analytically to obtain particle trajectories. A complete analytic solution to the 2‐D system of ordinary differential equations (ODEs) governing particle trajectories within a grid cell is provided. The analytic solution to the linear system of locally mass‐conserving constraints that must be enforced to obtain the coefficients in the ODEs is also provided. Numerical experiments are performed to demonstrate that the new method has substantial advantages in accuracy over previously published methods and that it does not suffer from unphysical particle clustering. The method can be used not only in particle‐tracking applications but also as part of a semi‐Lagrangian advection scheme.Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
This paper is devoted to the development of accurate high‐order interpolating schemes for semi‐Lagrangian advection. The characteristic‐Galerkin formulation is obtained by using a semi‐Lagrangian temporal discretization of the total derivative. The semi‐Lagrangian method requires high‐order interpolators for accuracy. A class of ??1 finite‐element interpolating schemes is developed and two semi‐Lagrangian methods are considered by tracking the feet of the characteristic lines either from the interpolation or from the integration nodes. Numerical stability and analytical results quantifying the amount of artificial viscosity induced by the two methods are presented in the case of the one‐dimensional linear advection equation, based on the modified equation approach. Results of test problems to simulate the linear advection of a cosine hill illustrate the performance of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
5.
Time‐splitting technique applied in the context of the semi‐Lagrangian semi‐implicit method allows the use of extended time steps mainly based on physical considerations and reduces the number of numerical operations at each time step such that it is approximately proportional to the number of the points of spatial grid. To control time growth of the additional truncation errors, the standard stabilizing correction method is modified with no penalty for accuracy and efficiency of the algorithm. A linear analysis shows that constructed scheme is stable for time steps up to 2h. Numerical integrations with actual atmospheric fields of pressure and wind confirm computational efficiency, extended stability and accuracy of the proposed scheme. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
6.
M. F. Carfora 《国际流体数值方法杂志》2000,34(6):527-558
A semi‐implicit, semi‐Lagrangian, mixed finite difference–finite volume model for the shallow water equations on a rotating sphere is introduced and discussed. Its main features are the vectorial treatment of the momentum equation and the finite volume approach for the continuity equation. Pressure and Coriolis terms in the momentum equation and velocity in the continuity equation are treated semi‐implicitly. Moreover, a splitting technique is introduced to preserve symmetry of the numerical scheme. An alternative asymmetric scheme (without splitting) is also introduced and the efficiency of both is discussed. The model is shown to be conservative in geopotential height and unconditionally stable for 0.5≤θ≤1. Numerical experiments on two standard test problems confirm the performance of the model. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
7.
Francis X. Giraldo 《国际流体数值方法杂志》2000,33(6):789-832
The weak Lagrange–Galerkin finite element method for the two‐dimensional shallow water equations on adaptive unstructured grids is presented. The equations are written in conservation form and the domains are discretized using triangular elements. Lagrangian methods integrate the governing equations along the characteristic curves, thus being well suited for resolving the non‐linearities introduced by the advection operator of the fluid dynamics equations. An additional fortuitous consequence of using Lagrangian methods is that the resulting spatial operator is self‐adjoint, thereby justifying the use of a Galerkin formulation; this formulation has been proven to be optimal for such differential operators. The weak Lagrange–Galerkin method automatically takes into account the dilation of the control volume, thereby resulting in a conservative scheme. The use of linear triangular elements permits the construction of accurate (by virtue of the second‐order spatial and temporal accuracies of the scheme) and efficient (by virtue of the less stringent Courant–Friedrich–Lewy (CFL) condition of Lagrangian methods) schemes on adaptive unstructured triangular grids. Lagrangian methods are natural candidates for use with adaptive unstructured grids because the resolution of the grid can be increased without having to decrease the time step in order to satisfy stability. An advancing front adaptive unstructured triangular mesh generator is presented. The highlight of this algorithm is that the weak Lagrange–Galerkin method is used to project the conservation variables from the old mesh onto the newly adapted mesh. In addition, two new schemes for computing the characteristic curves are presented: a composite mid‐point rule and a general family of Runge–Kutta schemes. Results for the two‐dimensional advection equation with and without time‐dependent velocity fields are illustrated to confirm the accuracy of the particle trajectories. Results for the two‐dimensional shallow water equations on a non‐linear soliton wave are presented to illustrate the power and flexibility of this strategy. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
8.
The finite‐element, semi‐implicit, and semi‐Lagrangian methods are used on unstructured meshes to solve the nonlinear shallow‐water system. Several ??1 approximation schemes are developed for an accurate treatment of the advection terms. The employed finite‐element discretization schemes are the P–P1 and P2–P1 pairs. Triangular finite elements are attractive because of their flexibility for representing irregular boundaries and for local mesh refinement. By tracking the characteristics backward from both the interpolation and quadrature nodes and using ??1 interpolating schemes, an accurate treatment of the nonlinear terms and, hence, of Rossby waves is obtained. Results of test problems to simulate slowly propagating Rossby modes illustrate the promise of the proposed approach in ocean modelling. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
9.
10.
A local analysis is performed to study the departure from passive advection by small inertial particles based on a Lagrangian framework. The analysis considers heavy particles immersed in a gaseous flow and is restricted to short times, making it relevant to the PIV technique. A necessary (but not sufficient condition) for passive particle advection of inertial particles is that the quantity Λmaxτp be much smaller than one, where Λmax is the largest modulus of the eigenvalues corresponding to the velocity gradient tensor. This allows for the inertial and passive time scales to match beyond the initial transient, and consequently for the respective trajectories to remain relatively close. Due to this important role regarding advection behavior, Λmaxτp is offered as a definition of a local Stokes number, StΛ. Since this quantity is a field quantity, it directly provides indication of when and where passive advection by particles can be expected. A departure equation is obtained in one-dimension, where the influence of initial velocity and gravity are explicitly shown. If the flow is irrotational, the higher dimensional analysis reduces to a set of decoupled one-dimensional equations acting along each respective eigenvector of the velocity gradient tensor. A similar expression is found for the case of a purely temporal flow field. 相似文献
11.
A compressible viscous isothermal model is presented for studying journal‐bearing lubrication. The viscosity in the model thickens with increasing density. The governing equations are written in terms of velocity, the natural logarithm of the density and the kinematic extra‐stress tensor. A semi‐Làgrangian treatment of the material derivatives is combined with a spectral element discretization in space. The roles of the speed of sound and the eccentricity ratio on the load‐bearing capacity of the journal bearing are investigated. Compressibility is shown to enhance the load‐bearing capacity and this effect is amplified as the eccentricity ratio approaches unity. It is shown that for speeds of sound in the region of those of multigrade oils, the dominant component of the force on the journal acts along the line joining the centres of the bearing and journal and in the direction away from the narrow gap. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
12.
The fully non‐linear free‐surface flow over a semi‐circular bottom obstruction was studied numerically in two dimensions using a mixed Eulerian–Lagrangian formulation. The problem was solved in the time domain that allows the prediction of a number of transient phenomena, such as the generation of upstream advancing solitary waves, as well as the simulation of wave breaking. A parametric study was performed for a range of values of the depth‐based Froude number up to 2.5 and non‐dimensional obstacle heights, α up to 0.9. When wave breaking does not occur, three distinct flow regimes were identified: subcritical, transcritical and supercritical. When breaking occurs it may be of any type: spilling, plunging or surging. In addition, for values of the Froude number close to 1, the upstream solitary waves break. A systematic study was undertaken to define the boundaries of each type of breaking and non‐breaking pattern and to determine the drag and lift coefficients, free‐surface profile characteristics and transient behavior. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
13.
Jacek A. Jankowski 《国际流体数值方法杂志》2009,59(10):1157-1179
The parallel implementation of an unstructured‐grid, three‐dimensional, semi‐implicit finite difference and finite volume model for the free surface Navier–Stokes equations (UnTRIM ) is presented and discussed. The new developments are aimed to make the code available for high‐performance computing in order to address larger, complex problems in environmental free surface flows. The parallelization is based on the mesh partitioning method and message passing and has been achieved without negatively affecting any of the advantageous properties of the serial code, such as its robustness, accuracy and efficiency. The key issue is a new, autonomous parallel streamline backtracking algorithm, which allows using semi‐Lagrangian methods in decomposed meshes without compromising the scalability of the code. The implementation has been carefully verified not only with simple, abstract test cases illustrating the application domain of the code but also with advanced, high‐resolution models presently applied for research and engineering projects. The scheme performance and accuracy aspects are researched and discussed. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
14.
Numerical oscillation has been an open problem for high‐order numerical methods with increased local degrees of freedom (DOFs). Current strategies mainly follow the limiting projections derived originally for conventional finite volume methods and thus are not able to make full use of the sub‐cell information available in the local high‐order reconstructions. This paper presents a novel algorithm that introduces a nodal value‐based weighted essentially non‐oscillatory limiter for constrained interpolation profile/multi‐moment finite volume method (CIP/MM FVM) (Ii and Xiao, J. Comput. Phys., 222 (2007), 849–871) as an effort to pursue a better suited formulation to implement the limiting projection in schemes with local DOFs. The new scheme, CIP‐CSL‐WENO4 scheme, extends the CIP/MM FVM method by limiting the slope constraint in the interpolation function using the weighted essentially non‐oscillatory (WENO) reconstruction that makes use of the sub‐cell information available from the local DOFs and is built from the point values at the solution points within three neighboring cells, thus resulting a more compact WENO stencil. The proposed WENO limiter matches well the original CIP/MM FVM, which leads to a new scheme of high accuracy, algorithmic simplicity, and computational efficiency. We present the numerical results of benchmark tests for both scalar and Euler conservation laws to manifest the fourth‐order accuracy and oscillation‐suppressing property of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
The problem of two‐dimensional tracer advection on the sphere is extremely important in modeling of geophysical fluids and has been tackled using a variety of approaches. A class of popular approaches for tracer advection include ‘incremental remap’ or cell‐integrated semi‐Lagrangian‐type schemes. These schemes achieve high‐order accuracy without the need for multistage integration in time, are capable of large time steps, and tend to be more efficient than other high‐order transport schemes when applied to a large number of tracers over a single velocity field. In this paper, the simplified flux‐form implementation of the Conservative Semi‐LAgrangian Multi‐tracer scheme (CSLAM) is reformulated using quadratic curves to approximate the upstream flux volumes and Gaussian quadrature for integrating the edge flux. The high‐order treatment of edge fluxes is motivated because of poor accuracy of the CSLAM scheme in the presence of strong nonlinear shear, such as one might observe in the midlatitudes near an atmospheric jet. Without the quadratic treatment of upstream edges, we observe at most second‐order accuracy under convergence of grid resolution, which is returned to third‐order accuracy under the improved treatment. A shallow‐water barotropic instability also reveals clear evidence of grid imprinting without the quadratic correction. Consequently, these tests reveal a problem that might arise in tracer transport near nonlinearly sheared regions of the real atmosphere, particularly near cubed‐sphere panel edges. Although CSLAM is used as the foundation for this analysis, the conclusions of this paper are applicable to the general class of incremental remap schemes. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
Anis Younes 《国际流体数值方法杂志》2004,45(2):157-178
An accurate finite‐volume Eulerian Lagrangian localized adjoint method (ELLAM) is presented for solving the one‐dimensional variable coefficients advection dispersion equation that governs transport of solute in porous medium. The method uses a moving grid to define the solution and test functions. Consequently, the need for spatial interpolation, or equivalently numerical integration, which is a major issue in conventional ELLAM formulations, is avoided. After reviewing the one‐dimensional method of ELLAM, we present our strategy and detailed calculations for both saturated and unsaturated porous medium. Numerical results for a constant‐coefficient problem and a variable‐coefficient problem are very close to analytical and fine‐grid solutions, respectively. The strength of the developed method is shown for a large range of CFL and grid Peclet numbers. Copyright 2004 John Wiley & Sons, Ltd. 相似文献
17.
A conservative, single‐cell‐based semi‐Lagrangian transport model is proposed in this paper. Using multi‐moment concept, an additional moment, i.e. volume‐integrated average (VIA), is treated as the model variable besides the point value (PV) updated in the traditional semi‐Lagrangian schemes. A quadratic interpolation function is constructed based on local degrees of freedom defined within each single cell. The PV moment is advanced by the semi‐Lagrangian formulation, whereas the VIA moment is updated by a finite volume formulation to rigorously ensure the numerical conservation. The numerical fluxes are computed from the PV moments defined along the boundary edges of the control volume. The scheme is extended to the spherical geometry through the application of the cubed‐sphere grid that eliminates the polar singularity in the conventional longitude/latitude coordinates by using the quasi‐uniform grid spacing covering the whole sphere. The single‐cell‐based scheme is well suited for the treatment of the connections between different patches. A simple quasi‐monotone limiter to the PV moment is applied to suppress non‐physical oscillations. The proposed scheme has been validated via representative benchmark tests and the performance is competitive to other existing transport schemes. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
18.
Two new volume‐of‐fluid (VOF) reconstruction algorithms, which are based on a least‐square fit technique, are presented. Their performance is tested for several standard shapes and is compared to a few other VOF/PLIC reconstruction techniques, showing in general a better convergence rate. The geometric nature of Lagrangian and Eulerian split advection algorithms is investigated in detail and a new mixed split Eulerian implicit–Lagrangian explicit (EI–LE) scheme is presented. This method conserves the mass to machine error, performs better than split Eulerian and Lagrangian algorithms, and it is only slightly worse than unsplit schemes. However, the combination of the interface reconstruction with the least‐square fit and its advection with the EI–LE scheme appears superior to other existing approaches. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
19.
The second moment numerical method (SMM) of Egan and Mahoney [Numerical modeling of advection and diffusion of urban area source pollutant. Journal of Applied Meteorology 1972; 11 : 312–322] is adapted to solve for the pure advection transport equation in a variety of flow fields. SMM eliminates numerical diffusion by employing a procedure that takes into account the first and second moments of mass distribution in each grid element. For pure translational flow fields, the method is conservative, positive definite and shape‐preserving. In rotational and/or shear flows, the accuracy of SMM is significantly reduced. Two improvements are presented to make the SMM applicable to a wider range of flow problems. It is shown that the improved SMM (ISMM) is less diffusive and more shape‐preserving than the SMM in rotational and/or deformational flows. The ISMM can also be used to solve for a color function in compressible flow fields. The computational efficiency of this method is compared with that of other methods and, for a given accuracy, it is shown that ISMM is a cost‐effective, non‐diffusive and shape‐preserving method. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
20.
G. Rossiello P. De Palma G. Pascazio 《International Journal of Computational Fluid Dynamics》2013,27(6):217-225
This article provides an analysis of high-order-accurate two-dimensional fluctuation splitting schemes for steady advection. Using Lagrangian elements, a residual distribution scheme is formulated and its properties are assessed. Distributing the residuals over the sub-triangles of each element allows one to obtain a well-posed scheme. It is also shown that the standard elemental approach is ill-posed, insofar as it produces an undetermined linear system. A steady scalar-advection problem is used to verify that the numerical schemes do obey the analysis. 相似文献