首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
An SPE cartridge based on an ampholine‐functionalized hybrid organic–inorganic silica sorbent has been adopted for the analysis of aromatic amines including 4‐aminobiphenyl, benzidine, 2‐naphthylamine, p‐chloroaniline, 2,4,5‐trimethylaniline, and 3,3′‐dichlorobenzidine. Crucial variables governing the extraction efficiency of the material such as the pH of sample, sample loading volume, solvent used for elution, and elution volume have been thoroughly optimized. The adsorption capacities for the six aromatic amines ranged from 0.17 to 1.82 μg/mg. The recoveries of aromatic amines spiked in textile samples ranged from 78.9 to 103.0%, with RSDs of 1.1–11.9% (n = 3). Moreover, the extraction efficiency of the ampholine‐functionalized hybrid organic–inorganic silica sorbent was at least comparable with that of Oasis WCX.  相似文献   

2.
This work is the first study on the extraction efficiency of self‐doped polyaniline that is immobilized on the graphene‐modified magnetic nanoparticles. The new material was used as a sorbent for the magnetic solid‐phase extraction of methyl‐, propyl‐, and butylparabens. The use of graphene provides a high surface area and prevents aggregation of the nanoparticles. The self‐doped polyaniline also provides multifunctionality, high extraction capacity, and chemical stability even in the basic medium. The parabens were acetylated for determination by gas chromatography with flame ionization detection. The effects of monomer ratio, extraction solvent, sorbent amount, sample volume, desorption solvent volume, adsorption and desorption times, and sample ionic strength were optimized. Preconcentration factors obtained were from 190 to 310. The detection limits of the method were <2.8 μg/L. Linear ranges of the method were 5–2000 μg/L for propyl and butyl parabens, and 10–2000 μg/L for methyl paraben. The method was applied for the determination of the parabens in cosmetic products and extraction recoveries were 89–101% with RSDs ≤7.9%.  相似文献   

3.
This paper describes the use of graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane as a solid‐phase extraction sorbent for the determination of organic acids. The resultant graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane was characterized by FTIR spectroscopy and adsorption experiments. Solid‐phase extraction parameters such as sorbent type, sample solution pH, sample loading rate, eluent salt concentration, eluent methanol concentration, elution rate, sample loading, and elution volume were optimized. The method showed good precision, accuracy, sensitivity, and linear response for organic acids analysis over a concentration range of 1–100 μg/L for benzoic acid, p‐methoxybenzoic acid, and salicylic acid and 5–100 μg/L for the remaining organic acids (cinnamic acid, p‐chlorobenzoic acid, and p‐bromobenzoic acid) with coefficients of determination (r2) of higher than 0.9957. Limits of detection from 0.50 to 1.0 μg/L for six organic acids were achieved. The developed method was successfully applied to determine organic acids in real samples.  相似文献   

4.
A rapid dispersive micro‐solid phase extraction (D‐μ‐SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM‐41 was used as sorbent in d ‐μ‐SPE of the azole compounds from biological fluids. Important D‐μ‐SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB‐C18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile–0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v /v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1–10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra‐ and inter‐day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3–114.8%. The MCM‐41‐D‐μ‐SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis.  相似文献   

5.
In this paper, multiwalled‐carbon‐nanotube‐based matrix solid‐phase dispersion coupled to HPLC with diode array detection was used to extract and determine honokiol and magnolol from Magnoliae Cortex. The extraction efficiency of the multiwalled‐carbon‐nanotube‐based matrix solid‐phase dispersion was studied and optimized as a function of the amount of dispersing sorbent, volume of elution solvent, and flow rate of elution solvent, with the aid of response surface methodology. An amount of 0.06 g of carboxyl‐modified multiwalled carbon nanotubes and 1.5 mL of methanol at a flow rate of 1.1 mL/min were selected. The method obtained good linearity (r2 > 0.9992) and precision (RSD < 4.7%) for honokiol and magnolol, with limits of detection of 0.045 and 0.087 μg/mL, respectively. The recoveries obtained from analyzing in triplicate spiked samples were determined to be from 90.23 to 101.10% and the RSDs from 3.5 to 4.8%. The proposed method that required less samples and reagents was simpler and faster than Soxhlet and maceration extraction methods. The optimized method was applied for analyzing five real samples collected from different cultivated areas.  相似文献   

6.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

7.
A highly selective molecularly imprinted polymer sorbent was synthesized and employed for the simultaneous determination of six sulfonamide antibiotic residues (sulfanilamide, sulfacetamide, sulfadiazine, sulfathiazole, sulfamerazine, and sulfamethizole) in milk samples. Multi‐analyte imprinted particles were used as a sorbent in solid‐phase extraction. Sulfonamides were separated on a high‐performance liquid chromatography column (Merck–Lichrospher RP18e, 5 μm 250 × 4 mm) and further identified and quantified by diode array detection. Several parameters including required loading of the molecularly imprinted polymer sorbent, mass of milk, volume, and type of elution solvent, as well as time for absorption and elution were investigated to obtain optimal experimental conditions. For comparison purpose, a non‐imprinted polymer was applied under the optimum conditions. The validation study according to the European Union Decision 2002/657/EC was based on the investigation of linearity, selectivity, stability, limits of detection and quantitation, decision limit, detection capability, trueness, precision, and ruggedness according to Youden's approach. The decision limit and detection capability values in the milk were achieved from 101.9 to 113.5 μg/kg and from 114.4 to 135.4 μg/kg, respectively, depending on the target sulfonamide drug. Finally, the optimized protocol was successfully applied to commercial milk samples and human breast milk.  相似文献   

8.
The approach of this work was to study the capability of graphene‐based materials in the field of biological sample preparation. A polypyrrole/graphene composite was synthesized and characterized. The potential of the nanocomposite was investigated as a sorbent in dispersive solid‐phase extraction followed by high‐performance liquid chromatography with UV detection for vancomycin as a model drug. The effect of different parameters influencing extraction efficiency such as sample pH and sample volume, ionic strength, extraction time, type, and volume of desorption solvent and desorption time were investigated. A comparison study was also conducted between polypyrrole/graphene and some different novel and classic sorbents. Under optimized conditions, the calibration curve for vancomycin showed linearity in the range of 0.05–10 μg/mL. In addition, limits of detection, and quantification were 0.003 and 0.01 μg/mL, respectively. The intraday and interday relative standard deviations at a concentration of 0.05 μg/mL (n = 3) were 1.6 and 2.1%, respectively. Furthermore, the proposed method was successfully applied for the determination of vancomycin in plasma and urine samples. The relative recoveries indicated the feasibility of graphene‐based sorbents in biological sample analysis.  相似文献   

9.
In this study, organic aerogels were synthesized by the sol–gel polycondensation of mixed cresol with formaldehyde in a slightly basic aqueous solution. Carbon aerogels and xerogels are generated by pyrolysis of organic aerogels. The novel sol–gel‐based micro‐solid‐phase extraction sorbent, resorcinol–formaldehyde xerogel, was employed for preconcentration of some selected herbicides. Three herbicides of the aryloxyphenoxypropionate group, clodinafop‐propargyl, haloxyfop‐etotyl, and fenoxaprop‐P‐ethyl, were extracted from aqueous samples by micro‐solid‐phase extraction and subsequently determined by gas chromatography with mass spectrometry. The effect of different parameters influencing the extraction efficiency of these herbicides including sample flow rate, sample volume, and extraction time were investigated and optimized. Under optimum conditions, linear calibration curves in the range of 0.10–500 ng/L with R2 > 0.99 were obtained. The relative standard deviation at 50 μg/L concentration level was lower than 10% (n = 5) and detection limits were between 0.05 and 0.20 μg/L. The proposed method was successfully applied to the sampling and extraction of herbicides from Zayanderood and paddy water samples.  相似文献   

10.
In this research, a green approach for dispersive solid phase microextraction was introduced for the extraction and determination of melamine in various matrices such as infant formula and hot water in a melamine bowl. In this way, a natural polar polymer called ß-cyclodextrin has been cross-linked with citric acid to create a water-insoluble adsorbent. The extraction was carried out by dispersion of the sorbent into the sample solution. The effective parameters on the extraction efficiency of the melamine, including ion strength, extraction time, sample volume, amount of absorbent, pH, type of desorption solvent, desorption time, and desorption solvent volume were optimized by one variable at a time approach. Under the optimal conditions, the method showed a good linear dynamic range for melamine in the range of 1–1000 μg/L with a coefficient of determination of 0.9985. The obtained limit of detection was 0.3 μg/L. The intra-day and inter-day relative standard deviations (n = 3) were 3.1% and 3.2% respectively. Lastly, this technique was applied to extract and determine the analyte in a melamine bowl and infant formula with acceptable and satisfactory results.  相似文献   

11.
In this article, the use of magnetically separable sorbent polyaniline/silica‐coated nickel nanoparticles is evaluated under a dispersive micro‐solid‐phase extraction approach for the extraction of phenolic compounds from water samples. The sorbent was prepared by in situ chemical polymerization of aniline on the surface of silica‐modified nickel nanoparticles and was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X‐ray powder diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectrometry, and vibrating sample magnetometry. Effective variables such as amount of sorbent (milligrams), pH and ionic strength of sample solution, volume of eluent solvent (microliters), vortex, and ultrasonic times (minutes) were investigated by fractional factorial design. The significant variables optimized by a Box–Behnken design were combined by a desirability function. Under the optimized conditions, the calibration graphs of analytes were linear in a concentration range of 0.02–100 μg/mL, and with correlation coefficients more than 0.999. The limits of detection and quantification were in the ranges of 10–23 and 33–77 μg/L, respectively. This procedure was successfully employed in the determination of target analytes in spiked water samples; the relative mean recoveries ranged from 96 to 105%.  相似文献   

12.
Cetyltrimethyl ammonium bromide‐modified attapulgite was prepared and utilized as a novel sorbent in a simple solid‐phase extraction method for the determination of vitamin A in blood serum. Several factors affecting extraction efficiency were systematically optimized, including the sampling solvent and its volume, as well as the elution solvent and its volume. Under the optimal solid‐phase extraction conditions, the adsorption capacity of vitamin A was as high as 28 mg/g according to the Langmuir isotherm model. Based on the developed solid‐phase extraction method, the level of vitamin A in 200 µL blood serum sample could be accurately determined by high‐performance liquid chromatography. The recoveries of vitamin A spiked in 10% v/v methanol aqueous solutions were in the range of 86.9–92.8%, with the relative standard deviations not more than 8.1%. The method was applied to the determination of vitamin A in serum samples from 20 pregnant women. Compared with the previously reported solid‐phase extraction methods for determination of vitamin A in serum, our developed cetyltrimethyl ammonium bromide‐modified attapulgite‐based solid‐phase extraction method used lower serum volume, omitted extra steps (i.e. evaporation and re‐dissolution), and eliminated internal standard. The results were promising for it to be used in routine monitoring during pregnancy.  相似文献   

13.
Solid‐phase extraction (SPE) in tandem with dispersive liquid–liquid microextraction (DLLME) has been developed for the determination of mononitrotoluenes (MNTs) in several aquatic samples using gas chromatography‐flame ionization (GC‐FID) detection system. In the hyphenated SPE‐DLLME, initially MNTs were extracted from a large volume of aqueous samples (100 mL) into a 500‐mg octadecyl silane (C18) sorbent. After the elution of analytes from the sorbent with acetonitrile, the obtained solution was put under the DLLME procedure, so that the extra preconcentration factors could be achieved. The parameters influencing the extraction efficiency such as breakthrough volume, type and volume of the elution solvent (disperser solvent) and extracting solvent, as well as the salt addition, were studied and optimized. The calibration curves were linear in the range of 0.5–500 μg/L and the limit of detection for all analytes was found to be 0.2 μg/L. The relative standard deviations (for 0.75 μg/L of MNTs) without internal standard varied from 2.0 to 6.4% (n=5). The relative recoveries of the well, river and sea water samples, spiked at the concentration level of 0.75 μg/L of the analytes, were in the range of 85–118%.  相似文献   

14.
Sulfonated poly(styrene‐divinylbenzene) modified with five kinds of amine functional groups was applied to the determination of carbendazim in apple samples with a pipette‐tip solid‐phase extraction method. The structures of the polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Five different modifications of the solid‐phase extraction sorbent based on sulfonated poly(styrene‐divinylbenzene) were tested under static and pipette‐tip solid‐phase extraction conditions. The polymer modified with p‐methoxyaniline showed the best recognition capacity and adsorption amount for carbendazim. Under the optimum conditions, 3.00 mg of the adsorbent, 1.00 mL of ethyl acetate as washing solvent, and 1.00 mL of ammonia/acetonitrile (5:95, v/v) as elution solvent were used in the pretreatment procedure of apple samples. The calibration graphs of carbendazim in methanol were linear over 5.00–200.00 μg/mL, and the limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of carbendazim were in the range of 91.31–98.13% with associated intraday relative standard deviations of 0.76–2.13% and interday relative standard deviations of 1.10–1.85%. Sulfonated poly(styrene‐divinylbenzene) modified with p‐methoxyaniline showed satisfactory results (recovery: 97.96%) and potential for the rapid purification of carbendazim in apple samples combined with the pipette‐tip solid‐phase extraction.  相似文献   

15.
In this work, an efficient sample preparation method termed solvent‐assisted dispersive solid‐phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre‐concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent‐assisted dispersive solid‐phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples.  相似文献   

16.
By synthesizing a molecular imprinted polymer as an efficient adsorbent, ciprofloxacin was micro‐extracted from seawater, human blood plasma and tablet samples by pipette‐tip micro solid phase extraction and determined spectrophotometrically. Response surface methodology was applied with central composite design to build a model based on factors affecting on microextraction of ciprofloxacin; including volume of eluent solvent, number of extraction cycles, number of elution cycles, and pH of sample. Other factors that affect extraction efficiency, such as type of eluent solvent, volume of sample, type, and amount of salt were optimized with one‐variable‐at‐a‐time method. Under optimum extraction condition, pH of sample solution was 7.0, volume of eluent solvent (methanol) was 200 µL, volume of sample solution was 10 mL, and the number of extraction and elution cycles was five and seven, respectively, amount of Na2SO4 (as salt) and MIP (as sorbent) were optimized at 150 and 2 mg, respectively. The linear range of the suggested method under optimum extraction factors was 5–150 µg/L with a limit of detection of 1.50 µg/L for the analyte. Reproducibility of the method (as relative standard deviation) was better than 7%.  相似文献   

17.
In this work, clay‐Na particles are used as the adsorbent for the solid‐phase extraction of acidic compounds. The novel sorbent under study is based on high‐specific surface area, cation‐exchange capacity designed specifically to offer ion‐exchange properties with the goal being to selectively extract a group of acidic compounds. The effects of the extraction parameters including extraction elution solvent, sample volume and pH. In optimum conditions, the repeatability for one fiber (= 3), expressed as % relative standard deviation, was between 0.3 and 4.3% for the acid compounds. The detection limits for the studied acidic compounds were between 0.1–0.6 μg/L. The developed method offers the advantages of being simple to use and having a low cost of equipment.  相似文献   

18.
In the present study, highly efficient and simple dispersive solid‐phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid‐phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH?4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid‐phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05–100 μg/L with detection limits in the range of 0.006–0.05 μg/L. The relative standard deviations were 0.33–3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids.  相似文献   

19.
The coextraction of acidic and basic compounds from different mediums is a significant concept in sample preparation. In this work, simultaneous extraction of acidic, basic, and neutral analytes in a single step was carried out for the first time. This procedure employed the dispersive solid‐phase microextraction of analytes with magnetic graphene oxide (graphene oxide/Fe3O4) sorbent followed by gas chromatography with flame ionization detection. After the adsorption of analytes by vortexing and decantation of the supernatant with a magnet, the sorbent was eluted with acetonitrile/methanol (2:1) mixture. The parameters affecting the extraction efficiency were optimized and obtained as follows: sorbent amount 60 mg, desorption time 1 min, extraction time 5 min, pH of the sample 7, sample volume 20 mL, and elution solvent volume 0.3 mL. Under the optimum conditions, linear dynamic ranges were achieved in the range of 0.5–4, 0.25–4, and 0.25–2 μg/mL and limits of detection were 0.341, 0.110, and 0.167 μg/mL for aniline, phenol, and naphthalene, respectively. The relative standard deviations were in the range of 3.3–5.7% in eight repeated extractions. Finally, the applicability of the method was evaluated by the extraction and determination of analytes in stream water and drinking water samples and satisfactory results were obtained.  相似文献   

20.
Magnetic particles modified with a dicationic polymeric ionic liquid are described as a new adsorbent in magnetic solid‐phase extraction. They were obtained through the copolymerization of a 1,8‐di(3‐vinylimidazolium)octane‐based ionic liquid with vinyl‐modified SiO2@Fe3O4, and were characterized by FTIR spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. The modified magnetic particles are effective in the extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons. Also, they can provide different extraction performance for the selected analytes including fenitrothion, parathion, fenthion, phoxim, phenanthrene, and fluoranthene, where the extraction efficiency is found to be in agreement with the hydrophobicity of analytes. Various factors influencing the extraction efficiency, such as, the amount of adsorbent, extraction, and desorption time, and type and volume of the desorption solvent, were optimized. Under the optimized conditions, a good linearity ranging from 1–100 μg/L is obtained for all analytes, except for parathion (2–200 μg/L), where the correlation coefficients varied from 0.9960 to 0.9998. The limits of detection are 0.2–0.8 μg/L, and intraday and interday relative standard deviations are 1.7–7.4% (n = 5) and 3.8–8.0% (n = 3), respectively. The magnetic solid‐phase extraction combined with high‐performance liquid chromatography can be applied for the detection of trace targets in real water samples with satisfactory relative recoveries and relative standard deviations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号