首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of scandium triflate, an efficient photoinduced electron transfer from the triplet excited state of C(60) to p-chloranil occurs to produce C(60) radical cation which has a diagnostic NIR (near-infrared) absorption band at 980 nm, whereas no photoinduced electron transfer occurs from the triplet excited state of C(60) (3C(60)) to p-chloranil in the absence of scandium ion in benzonitrile. The electron-transfer rate obeys pseudo-first-order kinetics and the pseudo-first-order rate constant increases linearly with increasing p-chloranil concentration. The observed second-order rate constant of electron transfer (k(et)) increases linearly with increasing scandium ion concentration. In contrast to the case of the C(60)/p-chloranil/Sc(3+) system, the k(et) value for electron transfer from 3C(60) to p-benzoquinone increases with an increase in Sc(3+) concentration ([Sc(3+)]) to exhibit a first-order dependence on [Sc(3+)], changing to a second-order dependence at the high concentrations. Such a mixture of first-order and second-order dependence on [Sc(3+)] is also observed for a Sc(3+)-promoted electron transfer from CoTPP (TPP(2-) = tetraphenylporphyrin dianion) to p-benzoquinone. This is ascribed to formation of 1:1 and 1:2 complexes between the generated semiquinone radical anion and Sc(3+) at the low and high concentrations of Sc(3+), respectively. The transient absorption spectra of the radical cations of various fullerene derivatives were detected by laser flash photolysis of the fullerene/p-chloranil/Sc(3+) systems. The ESR spectra of the fullerene radical cations were also detected in frozen PhCN at 193 K under photoirradiation of the fullerene/p-chloranil/Sc(3+) systems. The Sc(3+)-promoted electron-transfer rate constants were determined for photoinduced electron transfer from the triplet excited states of C(60), C(70), and their derivatives to p-chloranil and the values are compared with the HOMO (highest occupied molecular orbital) levels of the fullerenes and their derivatives.  相似文献   

2.
The lowest excited state of aromatic carbonyl compounds (naphthaldehydes, acetonaphthones, and 10-methylacridone) is changed from the n,pi triplet to the pi,pi singlet which becomes lower in energy than the n,pi triplet by the complexation with metal ions such as Mg(ClO(4))(2) and Sc(OTf)(3) (OTf = triflate), which act as Lewis acids. Remarkable positive shifts of the one-electron reduction potentials of the singlet excited states of the Lewis acid-carbonyl complexes (e.g., 1.3 V for the 1-naphthaldehyde-Sc(OTf)(3) complex) as compared to those of the triplet excited states of uncomplexed carbonyl compounds result in a significant increase in the redox reactivity of the Lewis acid complexes vs uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. Such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C-C bond formation between benzyltrimethylsilane and aromatic carbonyl compounds via the Lewis-acid-promoted photoinduced electron transfer. The quantum yield determinations, the fluorescence quenching, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the Lewis acid-catalyzed photoaddition reactions proceed via photoinduced electron transfer from benzyltrimethylsilane to the singlet excited states of Lewis acid-carbonyl complexes.  相似文献   

3.
Hydride transfer from 10-methyl-9,10-dihydroacridine (AcrH(2)) to 3,6-diphenyl-1,2,4,5-tetrazine (Ph(2)Tz), which contains a N=N double bond, occurs efficiently in the presence of Sc(OTf)(3) (OTf = OSO(2)CF(3)) in deaerated acetonitrile (MeCN) at 298 K, whereas no reaction occurs in the absence of Sc(3+). The observed second-order rate constant (k(obs)) increases with increasing Sc(3+) concentration to approach a limited value. When AcrH(2) is replaced by the dideuterated compound (AcrD(2)), the rate of Sc(3+)-promoted hydride transfer exhibits the same primary kinetic isotope effect (k(H)/k(D) = 5.2+/-0.2), irrespective of Sc(3+) concentration. Scandium ion also promotes an electron transfer from CoTPP (TPP(2)(-) = tetraphenylporphyrin dianion) and 10,10'-dimethyl-9,9'-biacridine [(AcrH)(2)] to Ph(2)Tz, whereas no electron transfer from CoTPP or (AcrH)(2) to Ph(2)Tz occurs in the absence of Sc(3+). In each case, the observed second-order rate constant of electron transfer (k(et)) shows a first-order dependence on [Sc(3+)] at low concentrations and a second-order dependence at higher concentrations. Such dependence of k(et) on [Sc(3+)] is ascribed to formation of 1:1 and 1:2 complexes between Ph(2)Tz(*)(-) and Sc(3+) at the low and high concentrations of Sc(3+), respectively, which results in acceleration of the rate of electron transfer. The formation of 1:2 complex has been confirmed by the ESR spectrum in which the hyperfine structure is different from that of free Ph(2)Tz(*)(-). The 1:2 complex formation results in the saturated kinetic dependence of k(obs) on [Sc(3+)] for the Sc(3+)-promoted hydride transfer, which proceeds via Sc(3+)-promoted electron transfer from AcrH(2) to Ph(2)Tz, followed by proton transfer from AcrH(2)(*)(+) to the 1:1 Ph(2)Tz(*)(-)-Sc(3+) complex and the subsequent facile electron transfer from AcrH(*) to Ph(2)TzH(*). The effects of counteranions on the Sc(3+)-promoted electron transfer and hydride transfer reactions are also reported.  相似文献   

4.
Pulse-radiolytic studies were performed to determine the rate constants of intermolecular electron transfer (k(et)) from fullerenes (C(60), C(76), and C(78)) to a series of arene radical cations in dichloromethane. The one-electron oxidation potentials of the employed arenes-corresponding to the one-electron reduction potentials of arene pi-radical cations-were determined in dichloromethane to evaluate the driving forces of electron-transfer oxidation of fullerenes with arene pi-radical cations. The driving force dependence of log k(et) shows a pronounced decrease towards the highly exothermic region, representing the first definitive confirmation of the existence of the Marcus inverted region in a truly intermolecular electron transfer. Electron-transfer reduction of fullerenes with anthracene radical anion was also examined by laser flash photolysis in benzonitrile. The anthracene radical anion was produced by photoinduced electron transfer from 10,10'-dimethyl-9,9',10,10'-tetrahydro-9,9'-biacridine [(AcrH)(2)] to the singlet excited state of anthracene in benzonitrile. The rate constants of electron transfer (k(et)) from anthracene radical anion to C(60), C(70), and a C(60) derivative were determined from the decay of anthracene radical anion in the presence of various concentrations of the fullerene. Importantly, a significant decrease in the k(et) value was observed at large driving forces (1.50 eV) as compared to the diffusion-limited value seen at smaller driving forces (0.96 eV). In conclusion, our study presents clear evidence for the Marcus inverted region in both the electron-transfer reduction and oxidation of fullerenes.  相似文献   

5.
Rates of Diels-Alder cycloadditions of anthracenes with methyl vinyl ketone (MVK) are accelerated significantly by the presence of scandium triflate [Sc(OTf)3]. Sc(OTf)3 also promotes photoinduced electron-transfer reactions from various electron donors to MVK significantly. Comparison of the promoting effect of Sc(OTf)3 in photoinduced electron-transfer reactions of MVK with the catalytic effect of Sc(OTf)3 in the Diels-Alder reaction of 9,10-dimethylanthracene with MVK has revealed that the MVK-Sc(OTf)3 complex is a reactive intermediate in both the Diels-Alder and photoinduced electron-transfer reactions. The observed second-order rate constants of the Sc(OTf)3-catalyzed Diels-Alder reactions of anthracenes with MVK are by far larger than those expected from the observed linear Gibbs energy relation for the Diels-Alder reactions of anthracenes with stronger electron acceptors than MVK, which are known to proceed via electron transfer. This indicates that the Sc(OTf)3-catalyzed Diels-Alder reactions of anthracenes with MVK does not proceed via an electron-transfer process from anthracences to the MVK-Sc(OTf)3 complex.  相似文献   

6.
Rate constants of photoinduced electron-transfer oxidation of unsaturated fatty acids with a series of singlet excited states of oxidants in acetonitrile at 298 K were examined and the resulting electron-transfer rate constants (k(et)) were evaluated in light of the free energy relationship of electron transfer to determine the one-electron oxidation potentials (E(ox)) of unsaturated fatty acids and the intrinsic barrier of electron transfer. The k(et) values of linoleic acid with a series of oxidants are the same as the corresponding k(et) values of methyl linoleate, linolenic acid, and arachidonic acid, leading to the same E(ox) value of linoleic acid, methyl linoleate, linolenic acid, and arachidonic acid (1.76 V vs SCE), which is significantly lower than that of oleic acid (2.03 V vs SCE) as indicated by the smaller k(et) values of oleic acid than those of other unsaturated fatty acids. The radical cation of linoleic acid produced in photoinduced electron transfer from linoleic acid to the singlet excited state of 10-methylacridinium ion as well as that of 9,10-dicyanoanthracene was detected by laser flash photolysis experiments. The apparent rate constant of deprotonation of the radical cation of linoleic acid was determined as 8.1 x 10(3) s(-1). In the presence of oxygen, the addition of oxygen to the deprotonated radical produces the peroxyl radical, which has successfully been detected by ESR. No thermal electron transfer or proton-coupled electron transfer has occurred from linoleic acid to a strong one-electron oxidant, Ru(bpy)3(3+) (bpy = 2,2'-bipyridine) or Fe(bpy)3(3+). The present results on the electron-transfer and proton-transfer properties of unsaturated fatty acids provide valuable mechanistic insight into lipoxygenases to clarify the proton-coupled electron-transfer process in the catalytic function.  相似文献   

7.
Thermal intramolecular electron transfer from the ferrocene (Fc) to naphthoquinone (NQ) moiety occurs efficiently by the addition of metal triflates (M(n)()(+): Sc(OTf)(3), Y(OTf)(3), Eu(OTf)(3)) to an acetonitrile solution of a ferrocene-naphthoquinone (Fc-NQ) linked dyad with a flexible methylene and an amide spacer, although no electron transfer takes place in the absence of M(n)()(+). The resulting semiquinone radical anion (NQ(*)(-)) is stabilized by the strong binding of M(n)()(+) with one carbonyl oxygen of NQ(*)(-)( )()as well as hydrogen bonding between the amide proton and the other carbonyl oxygen of NQ(*)(-). The high stability of the Fc(+)()-NQ(*)(-)/M(n)()(+)() complex allows us to determine the driving force of electron transfer by the conventional electrochemical method. The one-electron reduction potential of the NQ moiety of Fc-NQ is shifted to a positive direction with increasing concentration of M(n)()(+), obeying the Nernst equation, whereas the one-electron oxidation potential of the Fc moiety remains the same. The driving force dependence of the observed rate constant (k(ET)) of M(n)()(+)-promoted intramolecular electron transfer is well evaluated in light of the Marcus theory of electron transfer. The driving force of electron transfer increases with increasing concentration of M(n)()(+) [M(n)()(+)], whereas the reorganization energy of electron transfer decreases with increasing [M(n)()(+)] from a large value which results from the strong binding between NQ(*)(-) and M(n)()(+).  相似文献   

8.
1-Benzyl-4-tert-butyl-1,4-dihydronicotinamide (t-BuBNAH) reacts efficiently with p-benzoquinone (Q) to yield a [2+3] cycloadduct (1) in the presence of Sc(OTf)(3) (OTf = OSO(2)CF(3)) in deaerated acetonitrile (MeCN) at room temperature, while no reaction occurs in the absence of Sc(3+). The crystal structure of 1 has been determined by the X-ray crystal analysis. When t-BuBNAH is replaced by 1-benzyl-1,4-dihydronicotinamide (BNAH), the Sc(3+)-catalyzed cycloaddition reaction of BNAH with Q also occurs to yield the [2+3] cycloadduct. Sc(3+) forms 1:4 complexes with t-BuBNAH and BNAH in MeCN, whereas there is no interaction between Sc(3+) and Q. The observed second-order rate constant (k(obs)) shows a first-order dependence on [Sc(3+)] at low concentrations and a second-order dependence at higher concentrations. The first-order and the second-order dependence of the rate constant (k(et)) on [Sc(3+)] was also observed for the Sc(3+)-promoted electron transfer from CoTPP (TPP = tetraphenylporphyrin dianion) to Q. Such dependence of k(et) on [Sc(3+)] is ascribed to formation of 1:1 and 1:2 complexes between Q(*)(-) and Sc(3+) at the low and high concentrations of Sc(3+), respectively, which results in acceleration of the rate of electron transfer. The formation constants for the 1:2 complex (K(2)) between the radical anions of a series of p-benzoquinone derivatives (X-Q(*)(-)) and Sc(3+) are determined from the dependence of k(et) on [Sc(3+)]. The K(2) values agree well with those determined from the dependence of k(obs) on [Sc(3+)] for the Sc(3+)-catalyzed addition reaction of t-BuBNAH and BNAH with X-Q. Such an agreement together with the absence of the deuterium kinetic isotope effects indicates that the addition proceeds via the Sc(3+)-promoted electron transfer from t-BuBNAH and BNAH to Q. When Sc(OTf)(3) is replaced by weaker Lewis acids such as Lu(OTf)(3), Y(OTf)(3), and Mg(ClO(4))(2), the hydride transfer reaction from BNAH to Q also occurs besides the cycloaddition reaction and the k(obs) value decreases with decreasing the Lewis acidity of the metal ion. Such a change in the type of reaction from a cycloaddition to a hydride transfer depending on the Lewis acidity of metal ions employed as a catalyst is well accommodated by the common reaction mechanism featuring the metal-ion promoted electron transfer from BNAH to Q.  相似文献   

9.
Donor-bridge-acceptor triad (Por-2TV-C(60)) and tetrad molecules ((Por)(2)-2TV-C(60)), which incorporated C(60) and one or two porphyrin molecules that were covalently linked through a phenylethynyl-oligothienylenevinylene bridge, were synthesized. Their photodynamics were investigated by fluorescence measurements, and by femto- and nanosecond laser flash photolysis. First, photoinduced energy transfer from the porphyrin to the C(60) moiety occurred rather than electron transfer, followed by electron transfer from the oligothienylenevinylene to the singlet excited state of the C(60) moiety to produce the radical cation of oligothienylenevinylene and the radical anion of C(60). Then, back-electron transfer occurred to afford the triplet excited state of the oligothienylenevinylene moiety rather than the ground state. Thus, the porphyrin units in (Por)-2TV-C(60) and (Por)(2)-2TV-C(60) acted as efficient photosensitizers for the charge separation between oligothienylenevinylene and C(60).  相似文献   

10.
A meso,meso-linked porphyrin dimer [(ZnP)(2)] as a light-harvesting chromophore has been incorporated into a photosynthetic multistep electron-transfer model for the first time, including ferrocene (Fc), as an electron donor and fullerene (C(60)) as an electron acceptor to construct the ferrocene-meso,meso-linked porphyrin dimer-fullerene system (Fc-(ZnP)(2)-C(60)). Photoirradiation of Fc-(ZnP)(2)-C(60) results in photoinduced electron transfer from the singlet excited state of the porphyrin dimer [(1)(ZnP)(2)] to the C(60) moiety to produce the porphyrin dimer radical cation-C(60) radical anion pair, Fc-(ZnP)(2)(*+)-C(60)(*-). In competition with the back electron transfer from C(60)(*-) to (ZnP)(2)(*+) to the ground state, an electron transfer from Fc to (ZnP)(2)(*+) occurs to give the final charge-separated (CS) state, that is, Fc(+)-(ZnP)(2)-C(60)(*-), which is detected as the transient absorption spectra by the laser flash photolysis. The quantum yield of formation of the final CS state is determined as 0.80 in benzonitrile. The final CS state decays obeying first-order kinetics with a lifetime of 19 micros in benzonitrile at 295 K. The activation energy for the charge recombination (CR) process is determined as 0.15 eV in benzonitrile, which is much larger than the value expected from the direct CR process to the ground state. This value is rather comparable to the energy difference between the initial CS state (Fc-(ZnP)(2)(*+)-C(60)(*-)) and the final CS state (Fc(+)-(ZnP)(2)-C(60)(*-)). This indicates that the back electron transfer to the ground state occurs via the reversed stepwise processes,that is, a rate-limiting electron transfer from (ZnP)(2) to Fc(+) to give the initial CS state (Fc-(ZnP)(2)(*+)-C(60)(*-)), followed by a fast electron transfer from C(60)(*-) to (ZnP)(2)(*+) to regenerate the ground state, Fc-(ZnP)(2)-C(60). This is in sharp contrast with the extremely slow direct CR process of bacteriochlorophyll dimer radical cation-quinone radical anion pair in bacterial reaction centers.  相似文献   

11.
The rate constants of intermolecular photoinduced electron transfer from triplet excited states of metalloporphyrins to a series of p-benzoquinone derivatives in benzonitrile were determined to examine the effects of the driving force, the metal, and the conformational distortion of the porphyrin ring on the reorganization energies (λ) of electron transfer by laser flash photolysis. The λ values were evaluated from the determined rate constants on the basis of the Marcus theory of electron transfer. The λ values of planar metalloporphyrins, [Al(TPP)(PhCOO)] and [Zn(TPP)] (TPP(2-)=tetraphenylporphyrin dianion), are approximately the same, but they are 0.27 eV smaller than those of the corresponding nonplanar (saddle-distorted) metalloporphyrins [Al(DPP)(PhCOO)] and [Zn(DPP)] (DPP(2-)=dodecaphenylporphyrin dianion) when they are compared for the same driving force of photoinduced electron transfer. The axial ligand PhCOO(-) of [Al(TPP)](+) and [Al(DPP)](+) was replaced by anthraquinone-2-carboxylate (AqCOO(-)) to afford the electron donor-acceptor complexes [Al(TPP)(AqCOO)] and [Al(DPP)(AqCOO)], respectively. The X-ray crystal structure of [Al(TPP)(AqCOO)] revealed strong coordination of AqCOO(-) to the Al(3+) ion of [Al(TPP)](+) and the existence of π-π interactions between AqCOO(-) and the porphyrin ring. In the case of the saddle-distorted [Al(DPP)(AqCOO)], however, the AqCOO(-) moiety is nearly perpendicular to the porphyrin ring. The photodynamics of intracomplex photoinduced electron transfer from the singlet excited state of [Al(TPP)](+) and [Al(DPP)](+) to the AqCOO(-) moiety were also examined in comparison with the intermolecular photoinduced electron-transfer reactions, and the determined rate constants were evaluated in light of the Marcus theory of electron transfer to reveal that the electron transfer is adiabatic in each case.  相似文献   

12.
Fluorescence properties of fluorescein-based probes are shown to be finely controlled by the rate of photoinduced electron transfer from the benzoic acid moiety (electron donor) to the singlet excited state of the xanthene moiety (electron acceptor fluorophore). The occurrence of photoinduced electron transfer is clearly evidenced by transient absorption spectra showing bands due to the radical cation of the electron donor moiety and the radical anion of the xanthene moiety, observed in laser flash photolysis experiments. The photoinduced electron transfer rates and the rates of back electron transfer follow the Marcus parabolic dependence of electron transfer rate on the driving force. Such a dependence provides for the first time a quantitative basis for a rational design principle which has high efficiency in modulating fluorescence properties of fluorescein-based probes.  相似文献   

13.
Superoxide ion (O2˙-) forms a stable 1 : 1 complex with scandium hexamethylphosphoric triamide complex [Sc(HMPA)(3)(3+)], which can be detected in solution by ESR spectroscopy. Electron transfer from O2˙- -Sc(HMPA)(3)(3+) complex to a series of p-benzoquinone derivatives occurs, accompanied by binding of Sc(HMPA)(3)(3+) to the corresponding semiquinone radical anion complex to produce the semiquinone radical anion-Sc(HMPA)(3)(3+) complexes. The 1 : 1 and 1 : 2 complexes between semiquinone radical anions and Sc(HMPA)(3)(3+) depending on the type of semiquinone radical anions were detected by ESR measurements. This is defined as Sc(HMPA)(3)(3+)-coupled electron transfer. There are two reaction pathways in the Sc(HMPA)(3)(3+)-coupled electron transfer. One is a stepwise pathway in which the binding of Sc(HMPA)(3)(3+) to semiquinone radical anions occurs after the electron transfer, when the rate of electron transfer remains constant with the change in concentration of Sc(HMPA)(3)(3+). The other is a concerted pathway in which electron transfer and the binding of Sc(HMPA)(3)(3+) occurs in a concerted manner, when the rates of electron transfer exhibit first-order and second-order dependence on the concentration of Sc(HMPA)(3)(3+) depending the number of Sc(HMPA)(3)(3+) (one and two) bound to semiquinone radical anions. The contribution of two pathways changes depending on the substituents on p-benzoquinone derivatives. The present study provides the first example to clarify the kinetics and mechanism of metal ion-coupled electron-transfer reactions of the superoxide ion.  相似文献   

14.
A charge-shift type of photoinduced electron-transfer reactions from various electron donors to the singlet excited state of 10-decylacridinium cation (DeAcrH+) in a nonpolar solvent (benzene) is found to be as efficient as those of 10-methylacridinium cation (MeAcrH+) and DeAcrH+ in a polar solvent (acetonitrile). Irradiation of the absorption bands of MeAcrH+ in acetonitrile solution containing tetraalkyltin compounds (R(4)Sn) results in the efficient and selective reduction of MeAcrH+ to yield the 10-methyl-9-alkyl-9,10-dihydroacridine (AcrHR). The same type of reaction proceeds in benzene when MeAcrH+ is replaced by DeAcrH+ which is soluble in benzene. The photoalkylation of R'AcrH+ (R' = Me and De) also proceeds in acetonitrile and benzene using 4-tert-butyl-1-benzyl-1,4-dihydronicotinamide (Bu(t)BNAH) instead of R(4)Sn, yielding MeAcrHBu(t). The quantum yield determinations, the fluorescence quenching of R'AcrH+ by electron donors, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the photoalkylation of R'AcrH+ in benzene as well as in acetonitrile proceeds via photoinduced electron transfer from the alkylating agents (R(4)Sn and Bu(t)BNAH) to the singlet excited states of R'AcrH+. The limiting quantum yields are determined by the competition between the back electron-transfer process and the bond-cleavage process in the radical pair produced by the photoinduced electron transfer. The rates of back electron transfer have been shown to be controlled by the solvent polarity which affects the solvent reorganization energy of the back electron transfer. When the free energy change of the back electron transfer (DeltaG(0)(bet)) in a polar solvent is in the Marcus inverted region, the rate of back electron transfer decreases with decreasing the solvent polarity, leading to the larger limiting quantum yield for the photoalkylation reaction. In contrast, the opposite trend is obtained when the DeltaG(0)(bet) value is in the normal region: the limiting quantum yield decreases with decreasing the solvent polarity.  相似文献   

15.
Photoinduced electron transfer in a self-assembled single-wall carbon nanotube (SWNT)-fullerene(C60) hybrid with SWNT acting as an electron donor and fullerene as an electron acceptor has been successfully demonstrated. Toward this, first, SWNTs were noncovalently functionalized using alkyl ammonium functionalized pyrene (Pyr-NH3+) to form SWNT/Pyr-NH3+ hybrids. The alkyl ammonium entity of SWNT/Pyr-NH3+ hybrids was further utilized to complex with benzo-18-crown-6 functionalized fullerene, crown-C60, via ammonium-crown ether interactions to yield SWNT/Pyr-NH3+/crown-C60 nanohybrids. The nanohybrids were isolated and characterized by TEM, UV-visible-near IR, and electrochemical methods. Free-energy calculations suggested possibility of electron transfer from the carbon nanotube to the singlet excited fullerene in the SWNT/Pyr-NH3+/crown-C60 nanohybrids. Accordingly, steady-state and time-resolved fluorescence studies revealed efficient quenching of the singlet excited-state of C60 in the nanohybrids. Further studies involving nanosecond transient absorption studies confirmed electron transfer to be the quenching mechanism, in which the electron-transfer product, fullerene anion radical, was possible to spectrally characterize. The rates of charge separation, kCS, and charge recombination, kCR, were found to be 3.46 x 10(9) and 1.04 x 10(7) s-1, respectively. The calculated lifetime of the radical ion-pair was found to be over 100 ns, suggesting charge stabilization in the novel supramolecular nanohybrids. The present nanohybrids were further utilized to reduce hexyl-viologen dication (HV2+) and a sacrificial electron donor, 1-benzyl-1,4-dihydronicotinamide, in an electron-pooling experiment, offering additional proof for the occurrence of photoinduced charge-separation and potential utilization of these materials in light-energy harvesting applications.  相似文献   

16.
Zinc porphyrin-naphthalenediimide (ZnP-NIm) dyads and zinc porphyrin-pyromellitdiimide-naphthalenediimide (ZnP-Im-NIm) triad have been employed to examine the effects of metal ions on photoinduced charge-separation (CS) and charge-recombination (CR) processes in the presence of metal ions (scandium triflate (Sc(OTf)(3)) or lutetium triflate (Lu(OTf)(3)), both of which can bind with the radical anion of NIm). Formation of the charge-separated states in the absence and in the presence of Sc(3+) was confirmed by the appearance of absorption bands due to ZnP(.) (+) and NIm(.) (-) in the absence of metal ions and of those due to ZnP(.) (+) and the NIm(.) (-)/Sc(3+) complex in the presence of Sc(3+) in the time-resolved transient absorption spectra of dyads and triad. The lifetimes of the charge-separated states in the presence of 1.0 x 10(-3) M Sc(3+) (14 micros for ZnP-NIm, 8.3 micros for ZnP-Im-NIm) are more than ten times longer than those in the absence of metal ions (1.3 micros for ZnP-NIm, 0.33 micros for ZnP-Im-NIm). In contrast, the rate constants of the CS step determined by the fluorescence lifetime measurements are the same, irrespective of the presence or absence of metal ions. This indicates that photoinduced electron transfer from (1)ZnP(*) to NIm in the presence of Sc(3+) occurs without involvement of the metal ion to produce ZnP(.) (+)-NIm(.) (-), followed by complexation with Sc(3+) to afford the ZnP(.) (+)-NIm(.) (-)/Sc(3+) complex. The one-electron reduction potential (E(red)) of the NIm moiety in the presence of a metal ion is shifted in a positive direction with increasing metal ion concentration, obeying the Nernst equation, whereas the one-electron oxidation potential of the ZnP moiety remains the same. The driving force dependence of the observed rate constants (k(ET)) of CS and CR processes in the absence and in the presence of metal ions is well evaluated in terms of the Marcus theory of electron transfer. In the presence of metal ions, the driving force of the CS process is the same as that in the absence of metal ions, whereas the driving force of the CR process decreases with increasing metal ion concentration. The reorganization energy of the CR process also decreases with increasing metal ion concentration, when the CR rate constant becomes independent of the metal ion concentration.  相似文献   

17.
Photoinduced electron-transfer processes between fullerene (C60) and 1,8-bis(dimethylamino)naphthalene, which is called a proton-sponge (PS), have been investigated by means of laser flash photolysis in the presence and absence of CF3CO2H. For a mixture of C60 and PS, the transient absorption spectra showed the rise of the C60 radical anion with concomitant decay of the C60 triplet (3C60), suggesting that photoinduced intermolecular electron transfer occurs via 3C60 in high efficiency in polar solvent. For a covalently bonded C60-PS dyad, photoinduced intramolecular charge-separation process takes place via the excited singlet state of the C60 moiety, although charge recombination occurs within 10 ns. For both systems, electron-transfer rates were largely decelerated by addition of a small amount of CF3CO2H, leaving the long-lived 3C60. These observations indicate that the energy levels for charge-separated states of the protonated PS and C60 become higher than the energy level of the 3C60 moiety, showing low donor ability of the protonated PS. Thus, intermolecular electron-transfer process via 3C60 for C60-PS mixture and intramolecular charge-separation process via 1C60-PS for C60-PS dyad were successfully controlled by the combination of the light irradiation with a small amount of acid.  相似文献   

18.
Nonplanar Sn(IV)-porphyrin complexes, [Sn(TMPP(Ph)(8))-Cl(2)] (1) and [Sn(TMPP(Ph)(8))(OMe)(2)] (2) (TMPP(Ph)(8): 5,10,15,20-tetrakis(4-methoxyphenyl)-2,3,7,8,12,13,17,18-octaphenylporphyrinato), were prepared and characterized by spectroscopic and electrochemical methods together with X-ray crystallography. Variable-temperature (1)H NMR study revealed that the coordination of the methoxo ligand of 2 is weak enough in solution to enhance the axial ligand exchange with a Keggin-type phosphotungstate (α-[PW(12)O(40)](3-)) due to the steric stress between the axial methoxo ligand and the peripheral phenyl groups of the porphyrin ligand. The formation of a novel 1:1 donor-acceptor complex, [Sn(TMPP(Ph)(8))(OMe)(α-[PW(12)O(40)])](2-) (4) was confirmed by (1)H NMR and UV-vis spectral titrations, and also by MALDI-TOF-MS measurements. Electrochemical measurements for the donor-acceptor complex in PhCN revealed that the Sn(IV)-TMPP(Ph)(8) moiety acts as an electron donor and the α-[PW(12)O(40)](3-) moiety acts as an electron acceptor and that the energy level of the electron-transfer (ET) state of the 1:1 complex (1.17 eV) is lower than that of the triplet excited states of the SnTMPP(Ph)(8) complex (1.31 eV). Femtosecond and nanosecond laser flash photolysis measurements indicate that intersystem crossing from the singlet excited sate to the triplet excited state occurs followed by intramolecular photoinduced electron transfer from the triplet excited state of the Sn(IV)-TMPP(Ph)(8) moiety to the α-[PW(12)O(40)](3-) moiety in the 1:1 complex in benzonitrile.  相似文献   

19.
Rates of hydrogen-transfer reactions from a series of para-substituted N,N-dimethylanilines to cumylperoxyl radical and oxygen-transfer reactions from cumylperoxyl radical to a series of sulfides and phosphines have been determined in propionitrile (EtCN) and pentane at low temperatures by use of ESR. The observed rate constants exhibit first-order and second-order dependence with respect to concentrations of N,N-dimethylanilines. This indicates that the hydrogen- and oxygen-transfer reactions proceed via 1:1 charge-transfer (CT) complexes formed between the substrates and cumylperoxyl radical. The primary kinetic isotope effects are determined by comparing the rates of N,N-dimethylanilines and the corresponding N,N-bis(trideuteriomethyl)anilines. The isotope effect profiles are quite different from those reported for the P-450 model oxidation of the same series of substrates. Rates of electron-transfer reactions from ferrocene derivatives to cumylperoxyl radical have also been determined by use of ESR. The catalytic effects of Sc(OTf)(3) (OTf = triflate) on the electron-transfer reactions are compared with those of Sc(OTf)(3) on the hydrogen- and oxygen-transfer reactions. Such comparison provides strong evidence that the hydrogen- and oxygen- transfer reactions of cumylperoxyl radical proceed via a one-step hydrogen atom and oxygen atom transfer rather than via an electron transfer from substrates to cumylperoxyl radical.  相似文献   

20.
A newly designed ferrocene-quinone dyad with an amide space (Fc-Q) is employed to examine formation of the hydrogen bonding in the one-electron reduced form (Q*-) and the dynamics in the photoinduced electron-transfer reaction from the ferrocene to the quinone moiety. Photoexcitation of the Q moiety in Fc-Q in deaerated PhCN with 388 nm results in intramolecular electron transfer from Fc to the singlet excited state of Q to produce Fc+-Q*- without changing the conformation (<1 ps), followed by hydrogen bond formation with the amide proton of the spacer (tau = approximately 5 ps). The resulting radical ion pair decays via a back electron transfer to the ground state at a longer time scale with a rate constant of 2.6 x 108 s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号