首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of multiple radiofrequency (RF) surface coil elements has applications in both fast parallel imaging and conventional imaging techniques. Through implementation of a simple magnetic decoupling network, 50 Omega matching can be achieved in both the transmitter and receiver chains, enabling the use of conventional RF power amplifiers and preamplifiers for transceive applications. Unlike phased array coil arrangements using low impedance preamplifiers for decoupling, the noise correlation between 50 Omega coils decoupled with discrete components has not been characterized. We have measured the dependence of coil quality factor (Q-factor) and noise correlation on coil separation and shown these quantities to be consistent with theoretical arguments, at least at 4 T (170 MHz). Our results suggest that a coil system for transmission and reception of NMR signals with 50 Omega coils can be built to take advantage of all the benefits of conventional array coils and with the added advantages of using conventional amplifiers.  相似文献   

2.
The purpose of this study was to present clinical examples and illustrate the inefficiencies of a conventional reconstruction using a commercially available phased array coil with localized sensitivities. Five patients were imaged at 1.5 T using a cardiac-synchronized gadolinium-enhanced acquisition and a commercially available four-element phased array coil. Four unique sets of images were reconstructed from the acquired k-space data: (a) sum-of-squares image using four elements of the coil; localized sum-of-squares images from the (b) anterior coils and (c) posterior coils and a (c) local reconstruction. Images were analyzed for artifacts and usable field-of-view. Conventional image reconstruction produced images with fold-over artifacts in all cases spanning a portion of the image (mean 90 mm; range 36-126 mm). The local reconstruction removed fold-over artifacts and resulted in an effective increase in the field-of-view (mean 50%; range 20-70%). Commercially available phased array coils do not always have overlapping sensitivities. Fold-over artifacts can be removed using an alternate reconstruction method. When assessing the advantages of parallel imaging techniques, gains achieved using techniques such as SENSE and SMASH should be gauged against the acquisition time of the localized method rather than the conventional sum-of-squares method.  相似文献   

3.
The study focuses on finding the pulse sequences depicting a rat’s tumor when the size of the field of view was reduced, using coils specifically designed for rats, and obtaining an optimized image of a rat by transforming the parameters, according to each pulse sequence. The manufactured coil is 8-channel phased array coils, and the type is a receive-only coil. The diameter of the coil is 80 mm, and the length is 150 mm. The overlapped distance among each channel was 8 mm, and the lab rats used in the experiment were the commonly used Sprague–Dawley rats. The study used three types of pulse sequences, which are the diffusion weight imaging (DWI), three-dimensional dual echo steady state (3-D DESS), and three-dimensional volumetric interpolated breath-hold (3-D VIBE). Along with the DWI results, pulse sequences of 3-D DESS and 3-D VIBE enabled to distinguish the tumors from that of normal tissues in the brain by optimizing a mediator variable and to illustrate the whole body imaging of a rat.  相似文献   

4.
Typically 31P in vivo magnetic resonance spectroscopic studies are limited by SNR considerations. Although phased arrays can improve the SNR; to date 31P phased arrays for high-field systems have not been combined with 31P volume transmit coils. Additionally, to provide anatomical reference for the 31P studies, without removal of the coil or patient from the magnet, double-tuning (31P/1H) of the volume coil is required. In this work we describe a series of methods for active detuning and decoupling enabling use of phased arrays with double-tuned volume coils. To demonstrate these principles we have built and characterized an actively detuneable 31P/1H TEM volume transmit/four-channel 31P phased array for 4 T magnetic resonance spectroscopic imaging (MRSI) of the human brain. The coil can be used either in volume-transmit/array-receive mode or in TEM transmit/receive mode with the array detuned. Threefold SNR improvement was obtained at the periphery of the brain using the phased array as compared to the volume coil.  相似文献   

5.
The signal-to-noise ratio (SNR) performance and practicality issues of a four-element phased-array coil and an implantable coil system were compared for rat spinal cord magnetic resonance imaging (MRI) at 7 T. MRI scans of the rat spinal cord at T10 were acquired from eight rats over a 3 week period using both coil systems, with and without laminectomy. The results demonstrate that both the phased array and the implantable coil systems are feasible options for rat spinal cord imaging at 7 T, with both systems providing adequate SNR for 100-mum spatial resolution at reasonable imaging times. The implantable coils provided significantly higher SNR, as compared to the phased array (average SNR gain of 5.3x between the laminectomy groups and 2.5x between the nonlaminectomy groups). The implantable coil system should be used if maximal SNR is critical, whereas the phased array is a good choice for its ease of use and lesser invasiveness.  相似文献   

6.
A four-element phased array coil for MR imaging of the knee was designed, built and tested for clinical use at 1.5 Tesla. In routine imaging, it provides over twofold increase in signal-to-noise (SNR) compared to two commercially available knee coils, and supports higher spatial image resolution. The phased array knee coil was also tested for its compatibility with parallel MR imaging that reduces imaging time by several folds over conventional MR technique. Results obtained using SiMultaneous Acquisition of Spatial Harmonics (SMASH) technique shows that our phased array knee coil can be used with parallel MR imaging. These improvements may enhance knee diagnosis with higher image quality and reduced scan time.  相似文献   

7.
In standard cylindrical gradient coils consisting of wires wound in a single layer, the rapid increase in coil resistance with efficiency is the limiting factor in achieving very large magnetic field gradients. This behavior results from the decrease in the maximum usable wire diameter as the number of turns is increased. By adopting a multilayer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favorable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. By extending the theory used to design standard cylindrical gradient coils, we have developed mathematical expressions which allow the design of multilayer coils, and the evaluation of their performance. These expressions have been used to design a four-layer,z-gradient coil of 8 mm inner diameter, which has an efficiency of 1.73 Tm−1A−1, a resistance of 1.8 Ω, and an inductance of 50 μH. This coil produces a gradient which deviates from linearity by less than 5% within a central cylindrical region of 4.5 mm length and 4.5 mm diameter. A coil has been constructed from this design and tested in simple imaging and pulsed gradient spin echo experiments. The resulting data verify the predicted coil performance, thus demonstrating the advantages of using multilayer coils for experiments requiring very large magnetic field gradients.  相似文献   

8.
A set of plate form three-dimensional magnetic gradient coils was developed and used in electron spin resonance imaging (ESRI) experiment. The coils were processed with whole copper plates instead of wound with copper wires, which made its structure so compact that it was much thinner and smaller comparing to those traditionally used in ESRI. The coil set had a pie-like appearance of which the total thickness was only 14 mm and the outer diameter was 250 mm. The efficiency of the coils could be greater than 10 mT/m/A when distance between the two side-pieces was 63 mm. A maximum gradient strength of more than 200 mT/m could be obtained with driving current of about 20 A in each dimension coil. The spatial linearity was better than 5% in all three dimensions within the available spatial linearity area of larger than a sphere of 40 mm in diameter. The stability of the gradients strength could reach the level of 10(-5). An imaging resolution of better than 1 mm could be achieved with the coil set. Some preliminary practical imaging results show that the developed gradient coil set is suitable for L-band ESRI experiment of biological samples or even in vivo small animals.  相似文献   

9.
介绍了一种用于开放式MRI系统的射频发射线圈. 此发射线圈为上下2个相同的线圈,分别安装在磁体的2极,两线圈采用非对称的正交方式放置. 线圈为矩形螺线管结构,通过电磁场数值计算的方法对线圈的匝间距进行了优化,使线圈在300 mm的球形区域内达到偏差不超过3 dB的均匀性要求. 根据优化结果制作了一套用于0.23 T开放式MRI系统的发射线圈,并对线圈的均匀性及射频发射的效率进行了测试. 测试结果表明,线圈具有较高的发射效率和较好的均匀性,由此验证了设计方案的可行性.  相似文献   

10.
This paper describes a superconducting magnet system for the China Accelerator Driven System (CADS). The magnetic field is provided by one main, two bucking and four racetrack coils. The main coil produces a central field of up to 7 T and the effective length is more than 140 mm, the two bucking coils can shield most of the fringe field, and the four racetrack superconducting coils produce the steering magnetic field. Its leakage field in the cavity zone is about 5× 10-5 T when the shielding material Niobium and cryogenic permalloy are used as the Meissner shielding and passive shielding respectively. The quench calculations and protection system are also discussed.  相似文献   

11.
Radio-frequency receiver phased-array coils in magnetic resonance imaging systems are used to pick up the signals emitted by the nuclei with high signal-to-noise ratio and a large region of sensitivity. Since the quality of obtained images strongly depends upon the correct choice of the coil geometry and position, array coils have to be designed by minimizing the mutual interaction among nearby coil elements and this is generally achieved by overlapping such adjacent elements. In this paper, we describe the use of a numerical solver based on finite-difference time-domain method to determine the optimal overlap distance, which guarantees the maximum decoupling level between the coil loops, for array coils constituted by various geometry elements. A novel array coil was designed, constituted by a couple of elliptical geometry elements in “folding” version around the animals’ spine curvature, for small animals’ imaging applications.  相似文献   

12.
High signal-to-noise ratios (SNR) are essential for high-resolution anatomical and functional MRI. Phased arrays are advantageous for this but have the drawback that they often have inflexible and bulky configurations. Particularly in experiments where functional MRI is combined with simultaneous electrophysiology, space constraints can be prohibitive. To this end we developed a highly flexible multiple receive element phased array for use on anesthetized monkeys. The elements are interchangeable and different sizes and combinations of coil elements can be used, for instance, combinations of single and overlapped elements. The preamplifiers including control electronics are detachable and can serve a variety of prefabricated and phase matched arrays of different configurations, allowing the elements to always be placed in close proximity to the area of interest. Optimizing performance of the individual elements ensured high SNR at the cortical surface as well as in deeper laying structures. Performance of a variety of arrangements of gapped linear arrays was evaluated at 4.7 and 7T in high-resolution anatomical and functional MRI.  相似文献   

13.
射频场映像是通过一定算法对磁共振射频线圈的发射场进行重建的方法.高场下的射频场经过生物组织时会发生明显变化,在其基础上可以反演生物组织体内电特性,进而对癌症等疾病进行早期诊断,是对生物组织的磁共振结构成像的有力补充.目前为止,射频场映像和电特性研究都以高场鸟笼线圈为主,对低场下的相控阵研究较少.本文主要研究了低场永磁体磁共振射频场的均匀度.有限元仿真和实验验证了在17.8 MHz激励下,射频场在空载和负载下均匀度均发生较大变化.射频场均匀度在负载下的改变在一定程度上可以反映负载生物组织的电特性,对磁共振电特性实用化研究提供了一定的参考价值.  相似文献   

14.
The development of 300 MHz radio-frequency (RF) head coils analogous to those used at field strengths of 1.5 and 3 T is complicated by increased dissipative losses in conductive tissue, effects arising from the short RF wavelength in biological tissue (about 13 cm at 300 MHz), and the constraints imposed by the use of head gradient sets desirable for mitigating increased static field susceptibility effects. In this study, five RF head coils were constructed and tested on a 7 T scanner including 2 TEM designs, 2 birdcage designs and a local receive-only array. Signal-to-noise ratio, coil reception profiles and interactions between the coil and dielectric head were examined. Particular attention was placed on the coil’s reception in the neck and shoulders, where the head gradient is unable to spatially encode the image. With the use of conductive shields and distributed capacitance, all of the coil designs could be made to image effectively at high field, but each design was found to have subtle differences in field distribution, interaction with the dielectric boundary conditions of the head and fringe fields in the neck and shoulders. In particular, the birdcage and array coils were found to have reducedB 1 reception field profiles in the neck and shoulders which helped reduce signal detection outside the linear region of the head gradient coil. Although the TEM coils exhibited higher signal detection in the neck and shoulders, all the coils picked up enough signal from these regions to produce artifacts in the brain. These artifacts could be mitigated through use of a conductive shield or by small local dephasing shims sewn into the shoulders of a jacket worn by the subject. Although homogeneous in low-dielectric-constant phantoms, the volume coil’sB 1 profile was strongly peaked in the center of the head, rendering them spatially complementary to that observed in the surface coil array. The image profile of the surface coil was found to be less dramatically changed from patterns observed at lower field strength. Its dielectric brightening pattern was found to depend on the orientation of the coil with respect to the head.  相似文献   

15.
The NMR phased array coil (PA) provides improved signal-to-noise ratio (SNR) over that available with the body coil. We evaluated image quality obtained with a pelvic PA compared to that obtained with the body coil for spin-echo imaging. Thirty-three women undergoing clinical pelvic MRI were imaged with the body coil followed by imaging with the PA with the same field-of-view (FOV) in 11 patients, and with a small FOV in 23 patients. Image quality was assessed independently by two radiologists. In individual cases there was significant improvement in image quality with the PA, however the expected marked improvement in image quality was not consistently found. Two factors which may limit image quality are increased motion artifact and nonuniformity of signal with distance from the coils. Significant improvements in image quality may occur with improved techniques to decrease motion artifact.  相似文献   

16.
In standard cylindrical gradient coils consisting of a single layer of wires, a limiting factor in achieving very large magnetic field gradients is the rapid increase in coil resistance with efficiency. This is a particular problem in small-bore scanners, such as those used for MR microscopy. By adopting a multi-layer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favourable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. Previously this approach has been applied to the design of unshielded, longitudinal, and transverse gradient coils. Here, the multi-layer approach has been extended to allow the design of actively shielded multi-layer gradient coils, and also to produce coils exhibiting enhanced cooling characteristics. An iterative approach to modelling the steady-state temperature distribution within the coil has also been developed. Results indicate that a good level of screening can be achieved in multi-layer coils, that small versions of such coils can yield higher efficiencies at fixed resistance than conventional two-layer (primary and screen) coils, and that performance improves as the number of layers of increases. Simulations show that by optimising multi-layer coils for cooling it is possible to achieve significantly higher gradient strengths at a fixed maximum operating temperature. A four-layer coil of 8 mm inner diameter has been constructed and used to test the steady-state temperature model.  相似文献   

17.
PURPOSE: Computer simulations and measurements on human volunteers were used to test the extent to which the quality of carotid imaging might be improved by coil arrays that are not limited by a constraint on the number of RF coil receiver ports. METHODS: Analytic near-field equations for the magnetic and electric fields of a rectangular loop resonator were used to estimate the relative signal-to-noise ratio (rSNR) along the length of a simulated carotid artery as a function of loop size, loop position and vessel depth. The sizes, positions and number of elements in a linear coil array that resulted in the maximum composite SNR along the length of a simulated carotid artery were then estimated. The linear array results were used to predict the total number of elements needed for optimal imaging of the carotid arteries. Also, three normal volunteers were imaged with a variety of RF coils, and the rSNR measurements along the lengths of the carotid artery were evaluated for each coil combination. RESULTS: The analytic simulation and the human volunteer measurements both show that improved SNR (e.g., >300% at the bifurcation) can be obtained with coils tailored to each specific region of the carotid artery in comparison to that obtained with four-element arrays designed and used to image the entire carotid artery. CONCLUSIONS: The resulting number of coil ports, 16 to 24, required for full coverage of the carotid arteries is consistent with the number of channels just becoming available on recently developed clinical scanners.  相似文献   

18.
It is thought that the design of magnetic field modulation coils is one of the factors limiting enlargement of the sample size in electron paramagnetic resonance (EPR) measurements. In this study, we miniaturized the magnetic field modulation coil and combined it with a surface-coil-type resonator (SCR). The inductor of the SCR was a circular single-turn one-loop coil (diameter, 1 mm), and the magnetic field modulation coil was a twin-loop coil consisting of two solenoid coils each made of 15 turns of copper wire on a cylindrical bobbin with an axial length of 3 mm and an elliptical cross section (major axis, 7 mm; minor axis, 3 mm). The former was located on the latter via a spacer (thickness, 3 mm) in such a way that the directions of their axes coincided. Their combined size was about 10 mm wide, 10 mm deep, and 6 mm high. The transmission lines of the SCR were set on resonance at about 700 MHz. EPR measurements of a phantom (comprising agar that included a nitroxide radical and physiological saline solution), made with a miniaturized modulation coil combined with the SCR, exhibited a sensitivity similar to that for the conventional method. Authors' address: Hidekatsu Yokoyama, Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8501, Japan  相似文献   

19.
A surface coil for MRI was designed and built based on the principles of the petal resonator proposed by Mansfield [J Phys D Appl Phys 21 (1988) 1643]. This resonator coil design was named the petal resonator surface (PERES) coil and is composed of an eight-petal coil array and a central circular coil. A minimum separation of three times the petal coil radius is necessary to significantly decrease the mutual inductance. An analytical function for the PERES Signal-to-noise ratio (SNR) is obtained based on the quasistatic method. Theoretical plots of SNR enhancement yielded 26% and 35% more SNR over the circular coil and phased-array coils. Imaging experiments were first performed using a spectroscopy phantom on a 1.5-T commercial imager. Subsequently, brain images of healthy volunteers were obtained. Clinical MR imager compatibility allows this resonator coil to be used with conventional pulse sequences and imaging protocols. This coil design offers a new alternative to existing surface coils because it significantly increases the SNR.  相似文献   

20.
Reactive cross-talk causes leakage of the reception signal between neighboring coils of a receiver array. We present here experimental and computer-simulated NMR images (based upon a simple theory) to show, for an array of two coils, that the leakage (or secondary) signal is combined phase sensitively with the primary signal in each coil, to produce (in certain geometries) a differential shading artifact, manifest as a divot of missing intensity in the image derived from one (and only one) of the two coils. The asymmetry of this effect arises from the sense of the nuclear precession, and the afflicted coil may be swapped with its mate by reversing the direction of the static magnetic field. The artifact appears most clearly in transaxial images and is shown to be forbidden in certain types of saggital images. In a simplified theory for an array of two meshes (i.e., with only two degrees of freedom) the severity of the artifact depends upon the normalized coefficient of coupling (denoted eta and related to the cross-talk in decibels, psi, by psi=-20 log eta.) While the presence of input trap circuits in a typical array doubles the degrees of freedom and complicates both the circuit theory and the circuit measurements, the cross-talk is nonetheless shown to be given by an expression of the form psi=-20 log eta', where the new primed parameter eta' embodies the impedance-matching capacitance and the resistance of the scanner's preamplifiers, as well as the mutual reactance responsible for the cross-talk. The values of cross-talk inferred from the computer simulations of the image artifact are somewhat higher (by an estimated 3 to 6 dB) than those obtained by bench top measurements; but, given that the simulations unmistakably reproduce the unique and highly characteristic visual appearance of the artifact, the proposed model for its formation is claimed to be essentially correct. Finally, it is suggested that the artifact could be corrected by means of the filtered, edge-completed, reception profile described by Wald and co-workers (Wald et al., Magn. Reson. Med. 34, 433 (1995)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号