首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well‐defined estimates of mutation rates in highly polymorphic tetranucleotide STR loci are a prerequisite for human identification in genetics laboratory routines useful for civil and criminal investigations. Studying 15 autosomal STR loci of forensic interest (CSF1PO, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11, FGA, TH01, TPOX, and vWA), we detected 193 slippage mutations (189 one‐step and four two‐step mutations) in 148 875 parent‐child allelic transfers from 5171 paternity cases with true biological relationship (15 096 individuals; 4754 trios and 417 duos; 9925 meiosis) from the state of São Paulo, a very representative population of Brazil. The overall mutation rate was 1.3 × 10?3 and the highest rates were observed at loci vWA (2.8 × 10?3), FGA and D18S51 (2.7 × 10?3 for both), while loci TH01 and TPOX did not present any mutations. The mean slippage mutation rate of paternal origin (1.8 × 10?3) was six times higher than that observed for maternal origin (0.3 × 10?3).  相似文献   

2.
Massively parallel sequencing (MPS) technologies have the ability to reveal sequence variations within STR alleles as well as their nominal allele lengths, which have traditionally been detected by CE instruments. Recently, Thermo Fisher Scientific has updated the MPS-STR panel, named the Precision ID GlobalFiler next-generation sequencing (NGS) STR Panel version 2, with primers redesigned to add two pentanucleotide tandem repeat loci and profile interpretation supported by the Converge software. Using the Ion Chef System, the Ion S5XL System, and the Converge software, genetic variations were characterized within STR repeat and flanking regions of 30 autosomal STR markers in 115 unrelated individuals from two Chinese population groups (58 Tibetans and 57 Hans). Nineteen STRs demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. In total, 390 alleles were identified by their sequences compared with 258 alleles that were identified by length. Of these 92 sequence variants found within the STR repeat regions, 40 variants were located in STR flanking regions. Additionally, the agreement of the results with CE data was evaluated, as was the ability of this new MPS panel to analyze case-type (11 samples) and artificially degraded samples (seven samples in triplicate). The results generated from this study illustrate that extensive sequence variation exists in commonly used STR markers in the selected population samples and indicate that this NGS STR panel has the potential to be used as an effective tool for human forensics.  相似文献   

3.
Massively parallel sequencing of forensic STRs simultaneously provides length-based genotypes and core repeat sequences as well as flanking sequence variations. Here, we report primer sequences and concentrations of a next-generation sequencing (NGS)-based in-house panel covering 28 autosomal STR loci (CSF1PO, D1GATA113, D1S1627, D1S1656, D1S1677, D2S441, D2S1776, D3S3053, D5S818, D6S474, D6S1017, D6S1043, D8S1179, D9S2157, D10S1435, D11S4463, D13S317, D14S1434, D16S539, D18S51, D18S853, D20S482, D20S1082, D22S1045, FGA, TH01, TPOX, and vWA) and the sex determinant locus Amelogenin. Preliminary evaluation experiments showed that the panel yielded intralocus- and interlocus-balanced sequencing data with a sensitivity as low as 62.5 pg input DNA. A total of 203 individuals from Yunnan Bai population were sequenced with this panel. Comparative forensic genetic analyses showed that sequence-based matching probability of this 29-plex panel reached 2.37 × 10−29, which was 23 times lower than the length-based data. Compound stutter sequences of eight STRs were compared with parental alleles. For seven loci, repeat motif insertions or deletions occurred in the longest uninterrupted repeat sequences (LUS). However, LUS and non-LUS stutters co-existed in the locus D6S474 with different sequencing depth ratios. These results supplemented our current knowledge of forensic STR stutters, and provided a sound basis for DNA mixture deconvolution.  相似文献   

4.
Linkage disequilibria (LD) between alleles and haplotypes of human leucocyte antigen, locus A (HLA) and STR loci located in the human major histocompatibility complex were analyzed in order to investigate whether or not HLA alleles and haplotypes are predictable by alleles or haplotypes of HLA STRs. Standardized genotyping of eight STR loci (D6S2972, D6S2906, D6S2691, D6S2678, D6S2792, D6S2789, D6S273, and DQIV) was performed by CE on 600 individuals from 150 Austrian Caucasoid families with known HLA‐A,‐B,‐C and –DRB1 typing. From those, 576 full haplotypes of four HLA and eight STR loci were obtained. Haplotypes of two flanking STRs predicted HLA alleles and two‐locus HLA haplotypes better than single STR alleles, except HLA‐DRB1 alleles (92% were in LD with DQIV alleles only). A percentage of 65–86% of three and four‐locus HLA haplotypes were in LD with haplotypes of three, four, and eight of their flanking STR loci including numerous clear‐cut predictions (20–61%). All eight and a set of the four most informative STR loci D6S2972, D6S2678, D6S2792, and DQIV could identify all HLA identical and nonidentical siblings in 138 pairs of siblings. The results of this proof of concept study in Austrian Caucasoids show, that HLA STRs can aid the definition of HLA‐A,‐B,‐C,‐DRB1 haplotypes and the selection of sibling donors for stem cell transplantation.  相似文献   

5.
A new multiplex system for six tetranucleotide short tandem repeat (STR) loci was devised based on multicolor dye technology. Six loci (D20S480, D6S2439, D6S1056, D9S1118, D4S2639, and D17S1290), each with high discriminating power (each unbiased estimates of expected heterozygosity, Exp. Hz, > 0.80 in a preliminary test), were selected from more than 100 tetranucleotide STRs included in a commercially available primer set. These loci were also selected so as not to link with general STRs in commercially released kits including the combined DNA index system (CODIS) 13 core STRs. The primers were newly designed in the present study, in which each amplicon size had a range of less than 200 base pairs (bp), in order to genotype from highly degraded template DNA. Using this system, we genotyped 270 Honshu (mainland)-Japanese and 187 Okinawa-Japanese. From these allele frequencies, we performed three tests, a homozygosity test, a likelihood ratio test and an exact test for Hardy-Weinberg equilibrium (HWE), and no significant deviations (p < 0.05) from HWE were observed. We also compared the allele distributions at six STRs between both populations, and they were significantly different (p < 0.05) at three loci (D6S2439, D9S1118 and D4S2639). Furthermore, the Exp. Hz and the power of discrimination (PD) at all loci in the Honshu-Japanese population were higher than 0.80 and 0.93, respectively. These statistical values for discriminating power in the Honshu-Japanese were almost the same as in the Okinawa-Japanese. This novel, multiplex polymerase chain reaction (PCR) amplification and typing system for six STR loci thus promises to be a convenient and informative new DNA profiling system in the forensic field.  相似文献   

6.
We used the variable number tandem repeat (VNTR) polymorphism and the ten short tandem repeat (STR) polymorphisms to study a number of disputed paternity cases in the Japanese population. For the determination of VNTR locus (D1S80) and the ten STR loci (vWA, F13B, TH01, TPOX, CSF1PO, F13A01, LPL, D3S1744, D12S1090, D18S849) we used polymerase chain reaction (PCR) amplification and the vertical polyacrylamide gel electrophoresis technique followed by SYBR green I staining. The irregular repeats were analyzed by sequencing from bands of vertical polyacrylamide gel electrophoresis using the latest gene analyzing equipment, the ABI PRISM 310 Genetic Analyzer. The probable genotypes of the deceased putative father were deduced by Komatu's method from the genotypes of the widow and the genotypes of their children. The calculation of paternity probability used the Essen-Moller formula and Bayes's theorem. Calculated in eleven loci, the distinguishing probabilities (DP) and the mean exclusion chance (MEC) were 0.9999 and 0.9989, respectively. Therefore, information obtained from eleven DNA polymorphisms is enough to determine paternity plausibility.  相似文献   

7.
Previous studies have demonstrated that a large sample size is needed to reliably estimate population‐ and locus‐specific microsatellite mutation rates. Therefore, we conducted a long‐term collaboration study and performed a comprehensive analysis on the mutation characteristics of 19 autosomal short tandem repeat (STR) loci. The STR loci located on 15 of 22 autosomal chromosomes were analyzed in a total of 21 106 samples (11 468 parent–child meioses) in a Chinese population. This provided 217 892 allele transfers at 19 STR loci. An overall mutation rate of 1.20 × 10?3 (95% CI, 1.06–1.36 × 10?3) was observed in the populations across 18 of 19 STR loci, except for the TH01 locus with no mutation found. Most STR mutations (97.7%) were single‐step mutations, and only a few mutations (2.30%) comprised two and multiple steps. Interestingly, approximately 93% of mutation events occur in the male germline. The mutation ratios increased with the paternal age at child birth (r = 0.99, p<0.05), but not maternal age. Last, with the combination analysis of the data from the southern Chinese population, we drew a picture of 19 STR mutations in China. In conclusion, the data from this study will provide useful information in parentage testing, kinship analysis, and population genetics.  相似文献   

8.
Short tandem repeat loci have been recognized as useful tools in the routine forensic application and in recent decades, more and more new short tandem repeat (STR) loci have been constantly discovered, studied, and applied in forensic caseworks. In this study, we investigated the genetic polymorphisms of 21 STR loci in the Kazak ethnic minority as well as the genetic relationships between the Kazak ethnic minority and other populations. Allelic frequencies of 21 STR loci were obtained from 114 unrelated healthy Kazak individuals in the Ili Kazak Autonomous Prefecture, Xinjiang Uigur Autonomous Region of China. We observed a total of 159 alleles in the group with the allelic diversity values ranging from 0.0044 to 0.5088. The highest polymorphism was found at D19S433 locus and the lowest was found at D1S1627. Statistical analysis of the generated data indicated no deviation from Hardy–Weinberg equilibriums at all 21 STR loci. In order to estimate the population differentiation, allelic frequencies of all STR loci of the Kazak were compared with those of other neighboring populations using analysis of molecular variance method. Statistically significant differences were found between the studied population and other populations at 2–7 STR loci. A neighbor‐joining tree was constructed based on allelic frequencies of the 21 STR loci and phylogenetic analysis indicates that the Kazak has a close genetic relationship with the Uigur ethnic group. The present results may provide useful information for forensic sciences and population genetics studies, and can also increase our understanding of the genetic background of this group. The present findings showed that all the 21 STR loci are highly genetically polymorphic in the Kazak group, which provided valuable population genetic data for the genetic information study, forensic human individual identification, and paternity tests.  相似文献   

9.
The aim of this study was to investigate a 13 non‐CODIS STR loci database using three national populations from China. A new multiplex PCR system that simultaneously amplified 13 loci in the same PCR reaction was developed. This multiplex system included the 13 STR markers (D3S2402, D3S2452, D3S1766, D3S4554, D3S2388, D3S3051, D3S3053, D4S2364, D4S2404, AC001348A, AC001348B, D17S975, and D17S1294), which were successfully analyzed by using 441 DNA samples from three national populations in China (154 Mongol, 177 Kazakh, and 110 Uigur). Allele frequencies and mutation rates of the 13 non‐CODIS STR loci were investigated. A total of 4–10 alleles at each locus were observed and altogether 84, 88, and 87 alleles for the all selected loci were found in the Mongol, Kazakh, and Uigur, respectively. Eight mutations were detected from the 13 selected loci in 9880 meioses in kinship cases. These results indicate that this multiplex system may provide significant polymorphic information for kinship testing and relationship investigations.  相似文献   

10.
The Microreader? 20A ID system is designed for forensic applications such as personal identification, parentage testing, and research. It includes 13 combined DNA index system (CODIS) short tandem repeat (STR) loci (CSF1PO, FGA, TH01, TPOX, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, and D21S11), three expanded CODIS STR loci (D12S391, D19S433, and D2S1338), three non‐CODIS STR loci (D6S1043, Penta D, and Penta E), and the amelogenin locus in one reaction with a six‐dye fluorescent (FAM, HEX, TAMAR, ROX, PUR, and QD550) analysis system. In this study, the Microreader? 20A ID system was validated according to the Scientific Working Group on DNA Analysis Methods validation guidelines for forensic DNA Analysis methods and Chinese national standard, including PCR‐based studies, sensitivity study, precision, and accuracy evaluation, stutter calculation, inhibitor tests, species specificity, and DNA mixture studies. Our results suggest that the Microreader? 20A ID system is a useful tool for personal identification and parentage testing.  相似文献   

11.
A father/son material consisting of 1071 pairs was screened for de novo allele length mutation in locus DYF155S1. Six hundred of these pairs were also analyzed in locus DYF155S1 to detect de novo mutations in the minisatellite variant repeat (MVR)-code not resulting in a length change ("boundary switch" mutations). A modified MVR-polymerase chain reaction (PCR) method was used for this purpose. Twenty-seven de novo allele length mutations and eight "boundary switch" mutations were detected indicating mutation frequencies of approximately 2.5% and 1.3%, respectively. The combined mutation rate for MVR-code mutation is approximately 3.8%. There is a significant increase in mutation rate with paternal age (p = 0.049) in allele length mutations. In the present material, the mutation rate in the oldest age group is three times that of the youngest age group. A similar age relationship is not observed in "boundary switch" mutations. A comparison between progenitors and the other fathers in the material revealed no obvious association between mutation rate and allele length or modular structure (variation in repeat sequence). More than 75% of the length mutations involved the gain or loss of one repeat only. This finding as well as the observed paternal age influence on mutation rate, suggests replication slippage to be the major mutation mechanism in length mutations. However, in one particular case, an allele length mutant revealed rearrangements with direct duplication of repeats at distant sites within the repeat array, and with both loss and gain of repeats. Such complex structural changes could indicate that some of the mutants might arise from sister chromatide exchange. The mutation rate of "boundary switch" mutations is by far higher than would be expected if these mutations are two independent one-step allele length mutations. A different age distribution of "boundary switch" mutations than of allele length mutations also argue against such a hypothesis. Together this could indicate that "boundary switches" are products of another mutation mechanism than the one-step allele length mutations.  相似文献   

12.
Short tandem repeat (STR) loci, widely used as genetic markers in disease diagnostic studies and human identity applications, are traditionally genotyped through comparison of allele sizes to a sequenced allelic ladder. Allelic ladders permit a floating bin allele calling method to be utilized, which enables reliable allele calling across laboratories, instrument platforms, and electrophoretic conditions. Precise sizing methods for STR allele calling involving fixed bins can also be used when a high degree of precision has been demonstrated within an instrument platform and a set of electrophoretic conditions. An alternative method for reliable genotyping of STR markers, locus-specific brackets (LSBs), is introduced here. LSBs are artificial alleles created through molecular biology manipulations to be shorter or longer than alleles commonly seen in populations under investigation. The size and repeat number of measured alleles are interpolated between the two LSB products that are mixed with the polymerase chain reaction-amplified STR alleles. The advantages and limitations of the LSB approach are described along with a concordance study between the LSB typing approach and other STR typing methods. Complete agreement was observed with 162 samples studied at 5 Y-chromosome loci.  相似文献   

13.
Wang W  Bittles AH 《Electrophoresis》2001,22(6):1095-1097
Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) are widely used as markers in human genome studies. We have characterized a highly polymorphic STR locus (D20S85) with (AAAG)n repeats, by a combination of direct DNA sequencing and single-strand conformation polymorphism (SSCP) analysis. Eight STR alleles were first identified on denaturing gels, and SSCP gels were then used to demonstrate the existence of previously indistinguishable multiple alleles at the locus on the basis of variable allelic flanking sequences. This was confirmed by direct sequencing of the alleles. Four transitions, two G to A and two A to G in the 5'-flanking region of the locus at positions 14, 22, 24, and 26 effectively subdivided the STR alleles into two groups, with frequencies of 0.431 and 0.569, respectively. The mutational processes that generated the polymorphisms involved both simple changes in the number of AAAG repeats and single nucleotide mutations in the region flanking the repeat. The findings have potential application in the avoidance of false linkage and association. A composite locus of this nature, with separate STR and SNP evolutionary histories and resulting from different mutational processes, also could have wide application in studies of selection, drift, migration and inbreeding.  相似文献   

14.
The aim of this study was to investigate the genetic polymorphism of 20 short tandem repeat (STR) loci including D1S1656, D2S1338, D3S1358, D5S818, D6S1043, D7S820, D8S1179, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, CSF1PO, FGA, Penta D, Penta E, TH01, TPOX, and vWA in Han population of Henan, China and to assess its value in forensic science. Genomic DNA was extracted from 274 blood samples of unrelated healthy individuals in the Henan Han population. Alleles were amplified with PowerPlex® 21 system kit and PCR products were detected with ABI3130 genetic analyzer (Applied Biosystems) and the data were analyzed with modified PowerStats v1.2. A total of 229 alleles were observed in this Han population and the allelic frequencies ranged from 0.0020 to 0.5090 in the present study. Observed genotype distributions for each locus do not show deviations from Hardy–Weinberg equilibrium expectations (p < 0.05). The combined power of discrimination, combined power of exclusion, and combined matching probability of this 20 STR loci were 0.999999999, 0.999999994603, and 4.0433 × 10?24, respectively. The 20 STR loci are highly polymorphic in the Han population of Henan, China and they may be of great value in forensic science and human population genetics.  相似文献   

15.
This study developed a new multiplex PCR system that simultaneously amplifies 16 X‐STR loci in the same PCR reaction, and the polymorphism and mutation rates of these 16 X‐STR loci were explored in a Shanghai Han population from China. These loci included DXS10134, DXS10159, DXS6789, DXS6795, DXS6800, DXS6803, DXS6807, DXS6810, DXS7132, DXS7424, DXS8378, DXS9902, GATA165B12, GATA172D05, GATA31E08, and HPRTB. Samples from 591 unrelated individuals (293 males and 298 females) and 400 two‐generation families were successfully analyzed using this multiplex system. Allele frequencies and mutation rates of the 16 loci were investigated, with the comparison of allele frequency distributions among different populations performed. Polymorphism information contents of these loci were all >0.6440 except the locus DXS6800 (0.4706). Nine cases of mutations were detected in the 16 loci from the investigation of 9232 meioses. Pairwise comparisons of allele frequency distributions showed significant differences for most loci among populations from different countries and ethnic groups but not among the Han population living in other areas of China. These results suggest that the 16 X‐STR loci system provides highly informative polymorphic data for paternity testing and forensic identification in the Han population in Shanghai, China, as a complementary tool.  相似文献   

16.
Short tandem repeat (STR) automatic typing technology is extensively used in forensic laboratories with commercial kits, in rare cases genotyping misinterpretations or mislabeling may occur due to unexpected rare alleles. This study refers to the investigation of several rare alleles observed from routine cases. Besides cross-kit verification with Goldeneye 25A (Beijing PeopleSpot Inc, China) and Huaxia platinum (Thermo Fisher Scientific, USA) kits, the next-generation sequencing technology by MiSeq FGx System (Illumina, USA) was applied to further validation. To solve the inconsistent outcomes reached by the above mentioned approaches at D2S441 locus, single gene amplification, gene cloning, and genetic sequencing was also performed. As a result, five rare alleles were detected. Two novel alleles of allele 3 at the D13S317 locus and allele 5 at the D2S441 locus were found; three previously reported alleles of allele 9 at D1S1656 locus, allele 19 at Penta D locus, and allele 28 at D12S391 locus in STRBase were initially supplemented with sequence information. We, therefore, propose that such uncommon observations with rare events should be carefully investigated and interpreted.  相似文献   

17.
P Gill  P Koumi  H Allen 《Electrophoresis》2001,22(13):2670-2678
A 96-capillary array gel electrophoresis Applied Biosystems 3700 instrument has been used to analyse AMPF/STR SGM Plus short tandem repeat (STR) loci for forensic applications. This multiplex consists of ten STR loci plus the Amelogenin locus and currently forms the basis of the UK National DNA database that currently holds more than 1 million profiles. Of particular interest is the accuracy of allele designation that is determined by comparison with standard control allelic ladder markers. Some loci have higher standard deviations than others. In particular the high-molecular-weight HUMFIBRA alleles have high standard deviations of the order of 0.15 and it is these alleles that are most likely to be misdesignated. However, this risk is minimised by the analysis of at least five different allelic ladders across the array to estimate the mean size of each allele. In conjunction with this, a series of guidelines that can be programmed into expert systems are used to minimise risks of misdesignation. The efficacy of the procedures utilised are tested by computer simulation and demonstrated to be robust.  相似文献   

18.
Microsatellite structures in the context of human evolution   总被引:2,自引:0,他引:2  
Six microsatellite - or short tandem repeat (STR) - systems with uniform repetitive sequences (HumTH01, HumCD4, HumFES/FPS, HumF13B, HumTPO, HumLPL) and three compound repeat systems (HumVWA, HumFIBRA, D21S11) were used, including data from the literature, to determine genetic distances among eight populations worldwide. The TH01- and VWA homologous loci in nonhuman primates (chimpanzees, gorillas, orangutans, rhesus monkeys, ring-tailed lemurs) were compared and found to be shorter than in humans. Microsatellites of lower complexity were most efficient for the separation of major ethnic groups. The loci of higher complexity showed a leveling of the diversity differences among populations, which could be attributed to higher mutation rates.  相似文献   

19.
《Electrophoresis》2017,38(6):846-854
This study assesses the performance of Illumina's MiSeq FGx System for forensic genomics by systematically analyzing single source samples, evaluating concordance, sensitivity and repeatability, as well as describing the quality of the reported outcomes. DNA from 16 individuals (9 males/7 females) in nine separate runs showed consistent STR profiles at DNA input ≥400 pg, and two full profiles were obtained with 50 pg DNA input. However, this study revealed that the outcome of a single sample does not merely depend on its DNA input but is also influenced by the total amount of DNA loaded onto the flow cell from all samples. Stutter and sequence or amplification errors can make the identification of true alleles difficult, particularly for heterozygous loci that show allele imbalance. Sequencing of 16 individuals’ STRs revealed genetic variations at 14 loci at frequencies suggesting improvement of mixture deconvolution. The STR loci D1S1656 and DXS10103 were most susceptible to drop outs, and D22S1045 and DYS385a‐b showed heterozygote imbalance.  Most stutters were typed at TH01 and DYS385a‐b, while amplification or sequencing errors were observed mostly at D7S820 and D19S433. Overall, Illumina's MiSeq FGx System produced reliable and repeatable results.  aSTRs showed fewer drop outs than the Y‐ and X‐STRs.  相似文献   

20.
We report the evaluation of short tandem repeat (STR) locus D2S1242 (GDB ID G00-309-429) for forensic purposes, investigated by polymerase chain reaction (PCR) amplification and both native and denaturating polyacrylamide gel electrophoresis in 147 unrelated Austrians. No deviations from Hardy-Weinberg expectations were observed. The mean exclusion chance (MEC) was 0.669, the discriminating power (DP) was 0.947, and the observed heterozygosity rate was 0.856. An allelic ladder consisting of eight sequenced alleles (141-167 and 175 bp) was constructed. Sequence analysis revealed that the locus comprised two repeat motifs varying in number between alleles GAAA and GAAG. According to the number of tetranucleotide repeats the smallest allele was designated as 10 and the largest allele as 18.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号