首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a recently published paper by Chiu et al. [Chiu, S.W., Wang, S.-L., Chiu, Y.-S.P., 2007. Determining the optimal run time for EPQ model with scrap, rework and stochastic breakdowns. European Journal of Operational Research 180, 664–676], a theorem on conditional convexity of the integrated total cost function was employed in their solution procedure. We reexamine this theorem and present a direct proof to the convexity of the total cost function. This proof can be used in place of Theorem 1 of Chiu et al.’s paper to enhance quality of their optimization process.  相似文献   

2.
The Karush—Kuhn—Tucker (KKT) conditions can be regarded as optimality conditions for both variational inequalities and constrained optimization problems. In order to overcome some drawbacks of recently proposed reformulations of KKT systems, we propose casting KKT systems as a minimization problem with nonnegativity constraints on some of the variables. We prove that, under fairly mild assumptions, every stationary point of this constrained minimization problem is a solution of the KKT conditions. Based on this reformulation, a new algorithm for the solution of the KKT conditions is suggested and shown to have some strong global and local convergence properties. Accepted 10 December 1997  相似文献   

3.
We present a new characterization of minimizing sequences and possible minimizers (all called the minimizing magnetizations) for a nonlocal micromagnetic-like energy (without the exchange energy). Our method is to replace the nonlocal energy functional and its relaxation with certain local integral functionals on divergence-free fields obtained by a two-step minimization of some auxiliary augmented functionals. Through this procedure, the minimization problem becomes equivalent to the minimization of a new local variational functional, called the dual variational functional, which has a unique minimizer. We then precisely characterize the minimizing magnetizations of original nonlocal functionals in terms of the unique minimizer of the dual variational functional. Finally, we give some remarks and ideas on solving the dual minimization problem.  相似文献   

4.
A modified version of the author's original dynamic algorithm for unconstrained minimization is proposed. It employs time step selection procedure which results in a more efficient utilization of the original dynamic algorithm. The performance of the new algorithm is compared with that of a well established conjugate gradient algorithm when applied to three different extended test functions. Based on a comparison of the respective CPU times required for convergence, the new algorithm appears to be competitive.  相似文献   

5.
A heuristic algorithm for the weight minimization of sandwich structures by a specific kind of topology optimization is presented. The method employs a preexisting algorithm for the layerwise topology optimization of symmetric laminates under in‐plane loads and expands this method for the case of bending. During the optimization procedure the algorithm adds or subtracts material from the layers of the face sheets and the core of the sandwich plate in regions of high or low stresses respectively. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The computation of Gaussian orthant probabilities has been extensively studied for low-dimensional vectors. Here, we focus on the high-dimensional case and we present a two-step procedure relying on both deterministic and stochastic techniques. The proposed estimator relies indeed on splitting the probability into a low-dimensional term and a remainder. While the low-dimensional probability can be estimated by fast and accurate quadrature, the remainder requires Monte Carlo sampling. We further refine the estimation by using a novel asymmetric nested Monte Carlo (anMC) algorithm for the remainder and we highlight cases where this approximation brings substantial efficiency gains. The proposed methods are compared against state-of-the-art techniques in a numerical study, which also calls attention to the advantages and drawbacks of the procedure. Finally, the proposed method is applied to derive conservative estimates of excursion sets of expensive to evaluate deterministic functions under a Gaussian random field prior, without requiring a Markov assumption. Supplementary material for this article is available online.  相似文献   

7.
Recently, Chiu et al. (2012) [1] present an alternative optimization procedure to derive the optimal replenishment lot size for an economic manufacturing quantity (EMQ) model with rework and multiple shipments. This inventory model was proposed by Chiu et al. (2011) [2]. Both papers do not consider the determining of the number of shipments. This paper determines both the optimal replenishment lot size and the optimal number of shipments jointly. The solution of this paper is better than the solutions of Chiu et al.  and .  相似文献   

8.
A version of the facility location problem (the well-known p-median minimization problem) and its generalization—the problem of minimizing a supermodular set function—is studied. These problems are NP-hard, and they are approximately solved by a gradient algorithm that is a discrete analog of the steepest descent algorithm. A priori bounds on the worst-case behavior of the gradient algorithm for the problems under consideration are obtained. As a consequence, a bound on the performance guarantee of the gradient algorithm for the p-median minimization problem in terms of the production and transportation cost matrix is obtained.  相似文献   

9.
One of the open problems in the field of forward uncertainty quantification(UQ) is the ability to form accurate assessments of uncertainty having only incomplete information about the distribution of random inputs. Another challenge is to efficiently make use of limited training data for UQ predictions of complex engineering problems, particularly with high dimensional random parameters. We address these challenges by combining data-driven polynomial chaos expansions with a recently developed preconditioned sparse approximation approach for UQ problems. The first task in this two-step process is to employ the procedure developed in [1] to construct an "arbitrary" polynomial chaos expansion basis using a finite number of statistical moments of the random inputs. The second step is a novel procedure to effect sparse approximation via l1 minimization in order to quantify the forward uncertainty. To enhance the performance of the preconditioned l1 minimization problem, we sample from the so-called induced distribution, instead of using Monte Carlo (MC) sampling from the original, unknown probability measure. We demonstrate on test problems that induced sampling is a competitive and often better choice compared with sampling from asymptotically optimal measures(such as the equilibrium measure) when we have incomplete information about the distribution. We demonstrate the capacity of the proposed induced sampling algorithm via sparse representation with limited data on test functions, and on a Kirchoff plating bending problem with random Young's modulus.  相似文献   

10.
刚性目标形状反演的一种非线性最优化方法   总被引:1,自引:1,他引:0  
发展了从声散射场的远场分布的信息来再现声刚性目标形状反问题的一种非线性最优化方法,它是通过独立地求解一个不适定的线性系统和一个适定的非线性最小化问题来实现的。对反问题的非线性和不适定性的这种分离式数值处理,使所建立方法的数值实现是非常容易和快速的,因为在确定声刚性障碍物形状的非线性最优化步中,只需求解一个只有一个未知函数的小规模的最小平方问题。该方法的另一个特别的性质是,只需要远场分布的一个Fourier系数,即可对未知的刚性目标作物形设别。进而提出了数值实现该方法的一种两步调整迭代算法。对具有各种形状的二维刚性障碍物的数值试验保证了本算法是有效和实用的。  相似文献   

11.
This paper investigates the drag minimization in a two‐dimensional flow which is governed by a nonhomogeneous Navier–Stokes equations. Two approaches are utilized to derive shape gradient of the cost functional. The first one is to use the shape derivative of the fluid state and its associated adjoint state; the second one is to utilize the differentiability of a minimax formulation involving a Lagrange functional with a function space parametrization technique. Finally, a gradient type algorithm is effectively formulated and implemented for the mentioned drag minimization problem. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

12.
In this paper, we deal with l 0-norm data fitting and total variation regularization for image compression and denoising. The l 0-norm data fitting is used for measuring the number of non-zero wavelet coefficients to be employed to represent an image. The regularization term given by the total variation is to recover image edges. Due to intensive numerical computation of using l 0-norm, it is usually approximated by other functions such as the l 1-norm in many image processing applications. The main goal of this paper is to develop a fast and effective algorithm to solve the l 0-norm data fitting and total variation minimization problem. Our idea is to apply an alternating minimization technique to solve this problem, and employ a graph-cuts algorithm to solve the subproblem related to the total variation minimization. Numerical examples in image compression and denoising are given to demonstrate the effectiveness of the proposed algorithm.  相似文献   

13.
Fixed point and Bregman iterative methods for matrix rank minimization   总被引:5,自引:0,他引:5  
The linearly constrained matrix rank minimization problem is widely applicable in many fields such as control, signal processing and system identification. The tightest convex relaxation of this problem is the linearly constrained nuclear norm minimization. Although the latter can be cast as a semidefinite programming problem, such an approach is computationally expensive to solve when the matrices are large. In this paper, we propose fixed point and Bregman iterative algorithms for solving the nuclear norm minimization problem and prove convergence of the first of these algorithms. By using a homotopy approach together with an approximate singular value decomposition procedure, we get a very fast, robust and powerful algorithm, which we call FPCA (Fixed Point Continuation with Approximate SVD), that can solve very large matrix rank minimization problems (the code can be downloaded from http://www.columbia.edu/~sm2756/FPCA.htm for non-commercial use). Our numerical results on randomly generated and real matrix completion problems demonstrate that this algorithm is much faster and provides much better recoverability than semidefinite programming solvers such as SDPT3. For example, our algorithm can recover 1000 × 1000 matrices of rank 50 with a relative error of 10?5 in about 3?min by sampling only 20% of the elements. We know of no other method that achieves as good recoverability. Numerical experiments on online recommendation, DNA microarray data set and image inpainting problems demonstrate the effectiveness of our algorithms.  相似文献   

14.
In this paper the linear two-level problem is considered. The problem is reformulated to an equivalent quasiconcave minimization problem, via a reverse convex transformation. A branch and bound algorithm is developed which takes the specific structure into account and combines an outer approximation technique with a subdivision procedure.  相似文献   

15.
The Cranfield method of minimizing Boolean functions is examined, and it is shown that the method does not always produce all the minimal sums. An algorithm is given which produces all the minimal sums and uses the Cranfield method as a first stage in the minimization procedure.  相似文献   

16.
The matrix rank minimization problem has applications in many fields, such as system identification, optimal control, low-dimensional embedding, etc. As this problem is NP-hard in general, its convex relaxation, the nuclear norm minimization problem, is often solved instead. Recently, Ma, Goldfarb and Chen proposed a fixed-point continuation algorithm for solving the nuclear norm minimization problem (Math. Program., doi:, 2009). By incorporating an approximate singular value decomposition technique in this algorithm, the solution to the matrix rank minimization problem is usually obtained. In this paper, we study the convergence/recoverability properties of the fixed-point continuation algorithm and its variants for matrix rank minimization. Heuristics for determining the rank of the matrix when its true rank is not known are also proposed. Some of these algorithms are closely related to greedy algorithms in compressed sensing. Numerical results for these algorithms for solving affinely constrained matrix rank minimization problems are reported.  相似文献   

17.
We consider the global minimization of a bound-constrained function with a so-called funnel structure. We develop a two-phase procedure that uses sampling, local optimization, and Gaussian smoothing to construct a smooth model of the underlying funnel. The procedure is embedded in a trust-region framework that avoids the pitfalls of a fixed sampling radius. We present a numerical comparison to three popular methods and show that the new algorithm is robust and uses up to 20 times fewer local minimizations steps.  相似文献   

18.

In this study, we consider identification of parameters in a non-linear continuum-mechanical model of arteries by fitting the models response to clinical data. The fitting of the model is formulated as a constrained non-linear, non-convex least-squares minimization problem. The model parameters are directly related to the underlying physiology of arteries, and correctly identified they can be of great clinical value. The non-convexity of the minimization problem implies that incorrect parameter values, corresponding to local minima or stationary points may be found, however. Therefore, we investigate the feasibility of using a branch-and-bound algorithm to identify the parameters to global optimality. The algorithm is tested on three clinical data sets, in each case using four increasingly larger regions around a candidate global solution in the parameter space. In all cases, the candidate global solution is found already in the initialization phase when solving the original non-convex minimization problem from multiple starting points, and the remaining time is spent on increasing the lower bound on the optimal value. Although the branch-and-bound algorithm is parallelized, the overall procedure is in general very time-consuming.

  相似文献   

19.
This paper studies the speed of convergence of a general algorithm for function minimization without calculating derivatives. This algorithm contains Powell's 1964 algorithm as well as Zangwill's second modification of this procedure. The main results are Theorems 3.1 and 4.1 which show that, if the algorithm behaves well, then asymptotically almost conjugate directions are built; therefore, the algorithm has an every-iteration superlinear speed of convergence. The paper hinges on ideas of McCormick and Ritter and Powell.The authors wish to thank the Namur Department of Mathematics, especially its optimization group, for many discussions and encouragements. The authors also thank the reviewer for many helpful suggestions.  相似文献   

20.
A one-step method is proposed to estimate the unknown functions in the varying coefficient models, in which the unknown functions admit different degrees of smoothness. In this method polynomials of different orders are used to approximate unknown functions with different degrees of smoothness. As only one minimization operation is employed, the required computation burden is much less than that required by the existing two-step estimation method. It is shown that the one-step estimators also achieve the optimal convergence rate. Moreover this property is obtained under conditions milder than that imposed in the two-step estimation method. More importantly, as only one minimization operation is employed, the full asymptotic properties, not only the asymptotic bias and variance, but also the asymptotic distributions of the estimators can be derived. The asymptotic distribution results will play a key role for making statistical inference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号