首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider Dirac leptogenesis in supersymmetric theories where the supersymmetry breaking is transmitted to the observable sector by an anomalous U(1) symmetry. This kind of supersymmetry breaking is known to provide a solution to the problem and avoid large CP-violation effects. The asymmetries generated by the decays of heavy leptons do not suffer from wash-out due to the equilibration of left- and right-handed neutrinos thanks to the extreme smallness of the neutrino masses. The model ties up the smallness of the neutrino masses and the out-of-equilibrium nature of the heavy lepton decays with no tension with the overproduction of gravitinos.Received: 23 October 2003, Revised: 31 August 2004, Published online: 20 October 2004  相似文献   

2.
In the standard model the proton is protected from decay naturally by gauge symmetries, whereas in the ordinary minimal supersymmetric standard model an ad hoc discrete symmetry is imposed for the proton stability. We present a new supersymmetric model in which the proton decay is forbidden by an extra U(1) gauge symmetry. Particle contents are necessarily increased to be free from anomalies, incorporating right-handed neutrinos. Both Dirac and Majorana masses are generated for neutrinos, yielding nonvanishing but small masses. The superpotential consists only of trilinear couplings and the mass parameter &mgr; of the minimal model is induced by spontaneous breaking of the U(1) symmetry.  相似文献   

3.
We re-examine the question of radiative symmetry breaking in the Standard Model in the presence of right-chiral neutrinos and a minimally enlarged scalar sector. We demonstrate that, with these extra ingredients, the hypothesis of classically unbroken conformal symmetry, besides naturally introducing and stabilizing a hierarchy, is compatible with all available data; in particular, there exists a set of parameters for which the model may remain viable even up to the Planck scale. The decay modes of the extra scalar field provide a unique signature of this model which can be tested at LHC.  相似文献   

4.
Yosef Nir  Yael Shadmi 《Pramana》2004,63(6):1407-1416
We argue that neutrino flavor parameters may exhibit features that are very different from those of quarks and charged leptons. Specifically, within the Proggatt-Nielsen (FN) framework, charged fermion parameters depend on the ratio between two scales, while for neutrinos a third scale — that of lepton number breaking — is involved. Consequently, the selection rules for neutrinos may be different. In particular, if the scale of lepton number breaking is similar to the scale of horizontal symmetry breaking, neutrinos may become flavor-blind even if they carry different horizontal charges. This provides an attractive mechanism for neutrino flavor anarchy.  相似文献   

5.
We propose a new class of leptogenesis bounds on the spontaneous symmetry breaking of global lepton number. These models have a generic feature of inducing new lepton number violating interactions, due to the presence of the Majorons. We analyzed the singlet Majoron model with right-handed neutrinos to find that the lepton number should be broken above 105 GeV to realize a successful leptogenesis because the annihilations of the right-handed neutrinos into the massless Majorons and into the standard model Higgs should go out of equilibrium before the sphaleron process is over. We then argue that this type of leptogenesis constraint should exist in the singlet–triplet Majoron models as well as in a class of R-parity violating supersymmetric Majoron models.  相似文献   

6.
A standard model Lagrangian is constructed making the pseudo-Finsleroid generalization of the Yang-Mills field equation by the conformal method. The Higgs field potential is suggested that ensures generation of particle masses caused by the spontaneous symmetry breaking. After transition to the conformal coordinates, the expressions obtained assume the standard form that in many cases allows the results of pseudo-Euclidean theory to be used in calculations of the Feynman diagrams. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 44–51, April, 2006.  相似文献   

7.
The possible maximal mixing seen in the oscillations of atmospheric neutrinos has led to the postulate of μ–τ symmetry, which interchanges νμ and ντ. We argue that such a symmetry need not be special to neutrinos but can be extended to all fermions. The assumption that all fermion mass matrices are approximately invariant under the interchange of the second and the third generation fields is shown to be phenomenologically viable and has interesting consequences. In the quark sector, the smallness of Vub and Vcb can be consequences of this approximate 2–3 symmetry. The same approximate symmetry can simultaneously lead to a large atmospheric mixing angle and can describe the leptonic mixing quite well. We identify two generic scenarios leading to this. One is based on the conventional type-I seesaw mechanism and the other follows from the type-II seesaw model. The latter requires a quasi-degenerate neutrino spectrum for obtaining large atmospheric neutrino mixing in the presence of an approximate μ–τ symmetry. PACS 12.15.Ef; 14.60.Pq; 11.30.Er; 11.30.Qc  相似文献   

8.
The aim of this paper is to study the triviality of λ ϕ4 theory in a classical gravitational model. Starting from a conformal invariant scalar tensor theory with a self-interaction term λ ϕ4, we investigate the effect of a conformal symmetry breaking emerging from the gravitational coupling of the large-scale distribution of matter in the universe. Taking in this cosmological symmetry breaking phase the infinite limit of the maximal length (the size of the universe) and the zero limit of the minimal length (the Planck length) implies triviality, i.e. a vanishing coupling constant λ. It suggests that the activity of the self-interaction term λ ϕ4 in the cosmological context implies that the universe is finite and a minimal fundamental length exists.  相似文献   

9.
We discuss an extended model which naturally leads to mass scales and mixing angles relevant for understanding both the solar and atmospheric neutrino anomalies in terms of the vacuum oscillations of the three known neutrinos. The model uses a softly broken –– symmetry and contains a heavy scale GeV. The –– symmetric neutrino masses solve the atmospheric neutrino anomaly while breaking of –– generates the highly suppressed radiative mass scale needed for the vacuum solution of the solar neutrino problem. All the neutrino masses in the model are inversely related to , thus providing seesaw-type of masses without invoking any heavy right-handed neutrinos. The possible embedding of the model into an SU(5) grand unified theory is discussed. Received: 5 August 1999 / Revised version: 18 November 1999 / Published online: 6 April 2000  相似文献   

10.
It is likely that the LHC will observe a color- and charge-neutral scalar whose decays are consistent with those of the standard model (SM) Higgs boson. The Higgs interpretation of such a discovery is not the only possibility. For example, electroweak symmetry breaking could be triggered by a spontaneously broken, nearly conformal sector. The spectrum of states at the electroweak scale would then contain a narrow scalar resonance, the pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-boson-like properties. If the conformal sector is strongly coupled, this pseudodilaton may be the only new state accessible at high energy colliders. We discuss the prospects for distinguishing this mode from a minimal Higgs boson at the LHC and ILC. The main discriminants between the two scenarios are (i) cubic self-interactions and (ii) a potential enhancement of couplings to massless SM gauge bosons.  相似文献   

11.
We consider the minimal U(1)\(_{B-L}\) extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1)\(_{B-L}\) gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1)\(_{B-L}\) Higgs field. Because of the classically conformal symmetry, all dimensional parameters are forbidden. The \(B-L\) gauge symmetry is radiatively broken through the Coleman–Weinberg mechanism, generating the mass for the \(U(1)_{B-L}\) gauge boson (\(Z^\prime \) boson) and the right-handed neutrinos. Through a small negative coupling between the SM Higgs doublet and the \(B-L\) Higgs field, the negative mass term for the SM Higgs doublet is generated and the electroweak symmetry is broken. In this model context, we investigate the electroweak vacuum instability problem in the SM. It is well known that in the classically conformal U(1)\(_{B-L}\) extension of the SM, the electroweak vacuum remains unstable in the renormalization group analysis at the one-loop level. In this paper, we extend the analysis to the two-loop level, and perform parameter scans. We identify a parameter region which not only solve the vacuum instability problem, but also satisfy the recent ATLAS and CMS bounds from search for \(Z^\prime \) boson resonance at the LHC Run-2. Considering self-energy corrections to the SM Higgs doublet through the right-handed neutrinos and the \(Z^\prime \) boson, we derive the naturalness bound on the model parameters to realize the electroweak scale without fine-tunings.  相似文献   

12.
In supersymmetric theories with a strong conformal sector, soft supersymmetry breaking at the TeV scale naturally gives rise to confinement and chiral symmetry breaking at the same scale. We consider two such scenarios, one where the strong dynamics induces vacuum expectation values for elementary Higgs fields, and another where the strong dynamics is solely responsible for electroweak symmetry breaking. In both cases, the mass of the Higgs boson can exceed the LEP bound without tuning, solving the supersymmetry naturalness problem. A good precision electroweak fit can be obtained, and quark and lepton masses are generated without flavor-changing neutral currents. In addition to standard supersymmetry signals, these models predict production of multiple heavy standard model particles (t, W, Z, and b) from decays of resonances in the strong sector.  相似文献   

13.
An update is provided on theoretical and experimental aspects of a simple extension of the standard model featuring right-handed neutrinos and a second neutral gauge boson (Z′). We identify an ambiguity which a priori exists in the definition of electric charge in this model, and show spontaneous symmetry breaking can resolve it. We then re-analyse the experimental bounds on the mass of Z′ in the light of recent measurements of the standard Z boson mass and width at LEP and SLC. We find that the lower bound at 90% confidence level for the Z′ mass is 460 GeV.  相似文献   

14.
In the framework of a 3-3-1 model with right-handed neutrinos and three scalar triplets we consider different spontaneous symmetry breaking patterns seeking for a non-linear realization of accidental symmetries of the model, which will produce physical Nambu–Goldstone (NG) bosons in the neutral scalar spectrum. We make a detailed study of the safety of the model concerning the NG boson emission in energy-loss processes which could affect the standard evolution of astrophysical objects. We consider the model with a \(\mathbb {Z}_2\) symmetry, conventionally used in the literature, finding that in all of the symmetry breaking patterns the model is excluded. Additionally, looking for solutions for that problem, we introduce soft \(\mathbb {Z}_2\)-breaking terms in the scalar potential in order to remove the extra accidental symmetries and at the same time maintain the model as simple as possible. We find that there is only one soft \(\mathbb {Z}_2\)-breaking term that enables us to get rid of the problematic NG bosons.  相似文献   

15.
A Higgsless model for strong, electroweak and gravitational interactions is proposed. This model is based on the local symmetry group SU(3)×SU(2)L×U(1)×C,where C is the local conformal symmetry group. The natural minimal conformally invariant form of total Lagrangian is postulated. It contains all standard model fields and gravitational interaction. Using the unitary gauge and the conformal scale fixing conditions, we can eliminate all four real components of the Higgs doublet in this model. However, the masses of vector mesons, leptons, and quarks are automatically generated and are given by the same formulas as in the conventional standard model. In this manner one gets the mass generation without the mechanism of spontaneous symmetry breaking and without the remaining real dynamical Higgs field. The gravitational sector is analyzed, and it is shown that the model admits in the classical limit the Einsteinian form of gravitational interactions.  相似文献   

16.
We study type II supernova signatures of neutrino mass generation via symmetry breaking at a scale in the range from keV to MeV. The scalar responsible for symmetry breaking is thermalized in the supernova core and restores the symmetry. The neutrinos from scalar decays have about half the average energy of thermal neutrinos. The Bose-Einstein distribution of the scalars can be established with a megaton water Cerenkov detector. The discovery of the bimodal neutrino flux is, however, well within the reach of the Super-Kamiokande detector, without a detailed knowledge of the supernova parameters.  相似文献   

17.
We consider the leptonic and semileptonic (SL) lepton-flavor violating (LFV) decays of the charged leptons in the minimal supersymmetric standard model (MSSM) with right-handed neutrinos. The parameters of the MSSM model are determined in the framework of the minimal supersymmetric SO(10) GUT model assuming the minimal supergravity model of supersymmetry breaking. The free parameters of the model are constrained adopting the WMAP cold dark matter constraint and adjusting the neutrino oscillation data. So constrained, the SO(10) GUT model gives a definite prediction for the Dirac-neutrino Yukawa matrix, which induces all LFV effects in the MSSM model through renormalization group equations of soft SUSY breaking parameters. A very detailed numerical analysis has been made to define numerically all MSSM parameters necessary for the evaluation of the LFV amplitudes. The basic LFV amplitudes in MSSM were rederived and improved. The formalism for the evaluation of all SL LFV amplitudes is given. Numerical results for dominant SL LFV branching ratios, the anomalous magnetic moment of the muon and the ℓ→ℓ’γ branching ratios are given.  相似文献   

18.
New results are reported from large scale lattice simulations of a frequently discussed strongly interacting gauge theory with a fermion flavor doublet in the two-index symmetric (sextet) representation of the SU(3) color gauge group. We find that the chiral condensate and the mass spectrum of the sextet model are consistent with chiral symmetry breaking in the limit of vanishing fermion mass. In contrast, sextet fermion mass deformations of spectral properties are not consistent with leading conformal scaling behavior near the critical surface of a conformal theory. A recent paper could not resolve the conformal fixed point of the gauge coupling from the slowly walking scenario of a very small nearly vanishing β-function (DeGrand et al. [3]). It is argued that overall consistency with our new results is resolved if the sextet model is close to the conformal window, staying outside with a very small non-vanishing β-function. The model would exhibit then the simplest composite Higgs mechanism leaving open the possibility of a light scalar state with quantum numbers of the Higgs impostor. It would emerge as the pseudo-Goldstone dilaton state from spontaneous symmetry breaking of scale invariance. We will argue that even without association with the dilaton, the scalar Higgs-like state can be light very close to the conformal window. A new Higgs project of sextet lattice simulations is outlined to resolve these important questions.  相似文献   

19.
We show that even though particles with dynamically generated masses do not have the standard point test particle energy-momentum tensor associated with them, their motion in an external gravitational field is nonetheless geodesic. We discuss dynamically massive conformal perfect fluids and construct conformal invariant particle trajectories for them, and show that such fluids behave just like standard kinematically massive perfect fluids in the particular conformal gauge in which the symmetry breaking field is taken to have a constant, spacetime independent vacuum expectation value.  相似文献   

20.
We study the breakdown of conformal symmetry in a conformally invariant gravitational model. The symmetry breaking is introduced by defining a preferred conformal frame in terms of the large scale characteristics of the universe. In this context we show that a local change of the preferred conformal frame results in a Hamilton-Jacobi equation describing a particle with adjustable mass. In this equation the dynamical characteristics of the particle substantially depends on the applied conformal factor and local geometry. Relevant interpretations of the results are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号