首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2(简称LNMCO),并使用Zr (CH3COO)4进行ZrO2的包覆改性。TEM测试结果显示纳米级的ZrO2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 mA·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 mAh·g-1,而原样则为75.1%,224.1 mAh·g-1,循环100圈之后,1.5% ZrO2包覆样品的放电比容量为248.3 mAh·g-1,容量保持率为88.9%,高于原样的195.9 mAh·g-1和87.4%。  相似文献   

2.
采用3种不同pH值的去离子水,NH4NO3和H2C2O4溶液对富锂层状正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2进行表面化学侵蚀改性,旨在改善其整体电化学性能。ICP结果表明pH值对材料中Li的析出具有显著影响。X射线衍射(XRD)表明表面化学侵蚀对材料的结构有影响。拉曼光谱(Raman spectroscopy)表明材料表面结构发生了变化。H2C2O4溶液侵蚀过的样品的首次效率有了极大提高,但同时中值电压和循环性能显著恶化。NH4NO3溶液侵蚀过的样品的首次效率从63%提高到了85%,1C倍率下的放电比容量从149 mAh·g-1提高到194 mAh·g-1,同时保持了温和的中值电压变化曲线。通过高分辨透射电镜(HRTEM),X射线光电子能谱(XPS)和电化学阻抗谱(EIS)对改性机理进行了研究。  相似文献   

3.
采用3种不同pH值的去离子水,NH4NO3和H2C2O4溶液对富锂层状正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2进行表面化学侵蚀改性,旨在改善其整体电化学性能。ICP结果表明pH值对材料中Li的析出具有显著影响。X射线衍射(XRD)表明表面化学侵蚀对材料的结构有影响。拉曼光谱(Raman spectroscopy)表明材料表面结构发生了变化。H2C2O4溶液侵蚀过的样品的首次效率有了极大提高,但同时中值电压和循环性能显著恶化。NH4NO3溶液侵蚀过的样品的首次效率从63%提高到了85%,1C倍率下的放电比容量从149 mAh·g-1提高到194 mAh·g-1,同时保持了温和的中值电压变化曲线。通过高分辨透射电镜(HRTEM),X射线光电子能谱(XPS)和电化学阻抗谱(EIS)对改性机理进行了研究。  相似文献   

4.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li_(1/3)Mn_(2/3)]O2·0.4LiNi_(5/12)Mn_(5/12)Co_(1/6)O_2(简称LNMCO),并使用Zr(CH3COO)4进行ZrO_2的包覆改性。TEM测试结果显示纳米级的ZrO_2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO_2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 m A·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 m Ah·g-1,而原样则为75.1%,224.1 m Ah·g-1,循环100圈之后,1.5%ZrO_2包覆样品的放电比容量为248.3 m Ah·g-1,容量保持率为88.9%,高于原样的195.9 m Ah·g-1和87.4%。  相似文献   

5.
采用化学氧化聚合的方法成功合成了导电聚吡咯(PPy)包覆的纳米尺寸Li1.26Fe0.22Mn0.52O2(LFMO)正极材料。通过X射线衍射(XRD)检测样品的晶体结构,并通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察材料形态和微观结构。元素映射和傅里叶变换红外光谱结果表明,PPy导电网络存在于复合材料中,并且PPy均匀分布在LFMO颗粒上。通过恒流充放电测试和电化学阻抗谱(EIS)分析研究了所有样品的电化学性能,结果表明表面上的PPy显著降低了LFMO的电荷转移电阻。包覆PPy质量分数为2%的LFMO-2%PPy表现出极好的倍率性能和良好的循环稳定性,其在1C倍率下首次放电容量为206 mAh·g-1,首圈库仑效率为87%,在1C和2C分别循环50圈后,其容量分别稳定在131和139 mAh·g-1。  相似文献   

6.
通过共沉淀法制备了M(OH)2(M=Mn, Ni)前驱体, 并与LiOH混合, 合成了锂离子电池富锂正极材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2, 采用XRD、SEM和充放电实验对其进行表征. 研究结果表明, Li, Ni, Mn原子在M层中呈有序分布, 形成超结构; 富锂正极材料由亚微米的一次粒子团聚组成1~3 μm颗粒; 在2.0~4.8 V电位范围内, 充放电电流密度为10 mA/g时, 富锂正极材料表现出很高的可逆比容量, 达到200~240 mA·h/g, 同时具有良好的循环可逆性能.  相似文献   

7.
LiNi1/3Mn1/3Co1/3O2具有很高的理论比容量,但是三元正极材料在高电压下长循环时,其表面结构发生较大的衰退,导致电池的循环性能和倍率性能变差。本文采用耐高电压且结构稳定的富锂尖晶石Li4Mn5O12包覆LiNi1/3Mn1/3Co1/3O2可以有效改善材料的电化学性能。通过XRD、SEM、XPS和TEM等手段对包覆后的材料进行分析,证实了在LiNi1/3Mn1/3Co1/3O2的表面形成了10nm厚的均匀Li4Mn5O12的包覆层;在循环100圈后,包覆后的LiNi1/3Mn1/3Co1/3O2仍...  相似文献   

8.
王洪  张伟德 《应用化学》2013,30(6):705-709
用共沉淀法合成了富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2,并对其表面进行Al2O3包覆。采用XRD、SEM和电化学测试等方法对样品进行表征。结果表明,与Li[Li0.2Mn0.4Fe0.4]O2相比,包覆改性后的Li[Li0.2Mn0.4Fe0.4]O2具有较好的电化学性能,其初始放电容量未明显降低,而循环寿命大大提高,4.0%Al2O3包覆处理的富锂正极材料经50次充放电循环后,容量衰减量在9%左右。  相似文献   

9.
采用碳酸盐共沉淀的方法成功制备了不同二次颗粒粒径的富锂层状正极材料Li1.2Mn0.54Ni0.13Co0.13O2。并运用X射线衍射(XRD)、场发射扫描电镜(FESEM)、激光粒度测试和电化学测试等手段对所得材料的结构、形貌、粒度分布及电化学性能进行表征。结果显示,不同二次颗粒粒径的Li1.2Mn0.54Ni0.13Co0.13O2在材料结构上没有明显的差别,且首次放电比容量接近,均达到了281 mAh·g-1。但是,二次颗粒粒径越小,富锂层状材料的表现出的倍率性能越优异,当二次颗粒的D50为4.59μm,其在3C倍率下的放电容量达到了199 mAh·g-1。这是因为二次颗粒粒径越小,富锂层状材料可更好的与导电剂和电解液接触,且锂离子的扩散路径更短,从而表现出更好的倍率特性。  相似文献   

10.
采用碳酸盐共沉淀的方法成功制备了不同二次颗粒粒径的富锂层状正极材料Li1.2Mn0.54Ni0.13Co0.13O2。并运用X射线衍射(XRD)、场发射扫描电镜(FESEM)、激光粒度测试和电化学测试等手段对所得材料的结构、形貌、粒度分布及电化学性能进行表征。结果显示,不同二次颗粒粒径的Li1.2Mn0.54Ni0.13Co0.13O2在材料结构上没有明显的差别,且首次放电比容量接近,均达到了281 mAh·g-1。但是,二次颗粒粒径越小,富锂层状材料的表现出的倍率性能越优异,当二次颗粒的D50为4.59 μm,其在3C倍率下的放电容量达到了199 mAh·g-1。这是因为二次颗粒粒径越小,富锂层状材料可更好的与导电剂和电解液接触,且锂离子的扩散路径更短,从而表现出更好的倍率特性。  相似文献   

11.
为提高锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的首次充放电效率,对固相法合成的该材料进行了酸浸的改性研究。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构、形貌进行了表征。结果表明,Li[Li0.2Ni0.2Mn0.6]O2经过酸处理后,首次放电效率得到了较大的提高,但是放电中值电压明显下降。其中,0.5 mol.L-1的硝酸浸泡5 h的效果最佳,首次放电效率达到了86.7%,同时放电容量达到最大值的循环次数大大减少。酸浸改性的原因被归结于材料表面出现了富锂尖晶石结构Li4Mn5O12相。  相似文献   

12.
以LiOH.H2O、Mn(CH3COO)2.4H2O和Ni(CH3COO)2.4H2O为原料,分别用柠檬酸(CA)与乙二胺四乙酸(EDTA)为配位剂,采用溶胶凝胶法结合固相烧结法制备富锂固溶体正极材料Li[Li0.2Ni0.2Mn0.6]O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、激光粒度仪对所得样品的结构、形貌、粒径分布进行了表征,并测试了材料的电化学性能。采用CA配位制备的材料的电化学性能优于用EDTA配位制备的材料的电化学性能,室温下以18 mA.g-1的电流密度,在2.0~4.8 V电压范围内充放电,用CA制备的材料首次充电比容量高达324 mAh.g-1,首次库伦效率达82%;在180 mA.g-1的电流下,其可逆比容量保持在120 mAh.g-1。  相似文献   

13.
郑曦  曹林  朱文涛  邱新平 《化学学报》2007,65(7):571-574
利用高温固相法制备了具有层状结构的Li(Li0.15Ni0.21Fe0.21Mn0.45)O2阴极材料, 通过ICP-AES测定了各金属含量, XRD研究表明该材料在充放电过程中发生了结构变化. 进一步的电化学表征说明材料在结构转变后具有突出的高温循环性能(55 ℃), 以300 mA/g (2C)的电流密度循环428周后, 仍然能够保持80%的初始放电容量.  相似文献   

14.
郑杰允  汪锐  李泓 《物理化学学报》2001,30(10):1855-1860
采用固相烧结法制备了纯相Li2MnO3正极材料及靶材,采用脉冲激光沉积(PLD)法在氧气气氛、不同温度下沉积了Li2MnO3薄膜. 通过X射线衍射(XRD)和拉曼(Raman)光谱表征了薄膜的晶体结构,采用扫描电镜(SEM)观察薄膜形貌及厚度,利用电化学手段测试了Li2MnO3薄膜作为锂离子电池正极材料性能. 结果表明,PLD 方法制备的纯相Li2MnO3薄膜随着沉积温度升高薄膜结晶性变好. 25 ℃沉积的薄膜难以可逆充放电,400 ℃沉积的薄膜具有较高的电化学活性和循环稳定性. 相对于粉末材料,400与600 ℃制备的Li2MnO3薄膜电极平均放电电位随着循环次数的衰减速率明显低于相应的粉体材料.  相似文献   

15.
钟辉  许惠 《化学学报》2007,65(2):147-151
采用共沉淀-喷雾造粒法制备前驱体, 于750 ℃在空气中煅烧20 h合成出层状Li(Ni1/3Co1/3Mn1/3)O2正极材料, 并用XRD, SEM, 粒度分析和电性能测试考察了所得材料结构、形貌及电化学性能. 本层状Li(Ni1/3Co1/3Mn1/3)O2正极材料具有α-NaFeO2结构, 六方晶系, R3m空间群, 其晶胞参数为a=0.2865 nm, c=1.4238 nm. 当材料分别在2.8~4.2, 2.8~4.5 V间进行充放电时, 其首次放电容量分别为173.5和185.4 mAh•g-1, 首次充放电效率分别为90%和83.8%, 40次循环后容量保持率分别为96%和84%.  相似文献   

16.
采用水热辅助溶胶-凝胶工艺,通过原位复合的方法合成了锂离子电池用Li2MnSiO4/CNTs复合正极材料.分析了复合正极材料的形貌和组成特征,并对每摩尔分别复合5,10,20和30 g碳纳米管(CNTs)及未复合CNTs的样品进行了电化学性能测试.结果显示,所合成的Li2MnSiO4颗粒尺寸分布均匀,粒径在100 nm左右,易团聚.但随着CNTs复合量的增加,团聚现象逐渐改善.合成的Li2MnSiO4材料结晶度良好,属于正交晶系Pmn21空间群.电化学测试结果表明,每摩尔复合20 g CNTs的样品电化学性能最佳,在10 mA/g电流密度下,首周放电容量为150 mA.h/g,循环20周后仍保持在80 mA.h/g;CNTs的原位复合可提高Li2MnSiO4材料的导电性能,并改善其电化学性能.  相似文献   

17.
用溶胶凝胶法合成了Na+离子掺杂的Li_(1-x)Na_xMn_2O_4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li_(1-x)Na_xMn_2O_4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li_(0.97)Na_(0.03)Mn_2O_4在2C倍率下循环100圈后放电容量保持率比未掺杂的LiMn_2O_4从51.2%提升到84.1%。循环伏安测试表明Na+离子掺杂降低了材料极化且增大了锂离子扩散系数。10C倍率下Li0.97Na0.03Mn2O4仍有79.0 m Ah·g-1的放电容量,高于未掺杂样品的52.1 m Ah·g~(-1)。Na+离子掺杂可以稳定材料结构并提高锂离子扩散系数,从而提高LiMn_2O_4的电化学性能,是一种可行的改性方法。  相似文献   

18.
用溶胶凝胶法合成了Na+离子掺杂的Li1-xNaxMn2O4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li1-xNax Mn2O4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li0.97Na0.03Mn2O4在2C倍率下循环100圈后放电容量保持率比未掺杂的LiMn2O4从51.2%提升到84.1%。循环伏安测试表明Na+离子掺杂降低了材料极化且增大了锂离子扩散系数。10C倍率下Li0.97Na0.03Mn2O4仍有79.0 mAh·g-1的放电容量,高于未掺杂样品的52.1 mAh·g-1。Na+离子掺杂可以稳定材料结构并提高锂离子扩散系数,从而提高LiMn2O4的电化学性能,是一种可行的改性方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号