首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the mechanism of structural changes of a peptide nanotube and water confined inside the channel, the helical peptide tryptophylglycine monohydrate (WG.H2O) was studied by molecular dynamics (MD) simulations using the three-dimension parallel MD program ddgmq (software package) and a consistent force field. Simulations were performed on both the water-containing system and a model system without water molecules. The details of the structural behavior with temperature are investigated for the entire simulated temperature range. Phase transitions were obtained at 115, 245, 270, 310, and 385 K, due to the contributions of both the peptide and the confined water subsystems. The crystalline, amorphous, liquidlike, liquid, and superheated phases of water were observed in the temperature ranges 40-115, 115-245, 245-310, 310-385, and >385 K, respectively. At 300 K, the diffusion constant of the confined water is 0.46 x 10-5 cm2 s-1, a value comparable to that of other peptide nanotubes. The empty peptide system melts at 440 K. Mechanisms of the negative thermal expansion (NTE) along the tube axis were investigated for different temperature ranges. The contraction of the crystalline water (or amorphous water) draws also the tube walls in and leads to NTE below 245 K. The other NTEs appear to be connected to the collapse of the ice network or the solid peptide network between 245 K and room temperature or from 310 to 440 K, respectively.  相似文献   

2.
We placed nanometer-scale water-tube clusters with phase transition within a porous crystal formed from molecular blocks specifically designed to investigate the molecular dynamics of confined water molecules.  相似文献   

3.
Mild fabrication of anisotropic metal-lipid nanotube (LNT) nanocomposites, in which Au nanoparticles of 3-10 nm wide are organized in a glycolipid nanotube hollow cylinder, has been achieved by filling the internal channel of the LNT with HAuCl(4) aqueous solution by capillary force and subsequent photochemical reduction of [AuCl(4)](-).  相似文献   

4.
5.
The distribution of free (bulk) and bound (hydration) water in Triton N-42 inverse micelles has been studied. The percent of bulk water changes from 12% to 27% when solubilization capacity* (V s /V o ) increases from 0.5 vol.% to 3.5 vol.%. Triton N-42 inverse micelles contain hydration water of two types: 1) water bound with hydroxyl groups and secondary-bound with ethoxy groups and 2) water primary-bound with ethoxy groups. The quantity of water of each type is calculated as a function of solubilization capacity. The polar group of the surfactant molecule is hydrated by approximately six H2O molecules when V s /V o = 3.5 vol.%.  相似文献   

6.
A series of quasi-elastic neutron scattering measurements were performed using IN6 at the Institute Laue Langevin for a mesoporous organosilica material with phenyl functions, called phenyltriethoxysilane (PTES). The aim of the experiment was to study the diffusion dynamics of nano-scale water clusters inside the hydrophobic pores as a function of temperature and hydration. By fitting the Debye-Waller factor, the data show clearly the different behavior between water, both inside and outside the hydrophobic pores, which resembles bulk water. The mean thermal displacement 〈u2〉 of the external water increases with T almost linearly up to 353 K, while the internal water quickly reaches the maximum at T∼323 K, indicating the confinement by an averaged pore diameter of the porous organosilica.  相似文献   

7.
8.
An MD simulation of 216 ST2 water molecules between 12-6 Lennard-Jones walls has been performed which extend over 20 ps at an average temperature of 287 K. The oxygen atom density profile is reported the influence of the walls on the orientation of the water molecules on the self-diffusion coefficient have been investigated The results are compared with those from MC and MD simulations of similar systems.  相似文献   

9.
A scaling model is presented to analyze the reversible strain-hardening phenomenon in end-tethered polymer clay nanocomposites (Krishnamoorti, R.; Giannelis, E. P. Langmuir 2001, 17, 1448). It is assumed that for attractive clay-polymer interactions a fraction of the polymer chains that span the space between opposite clay plates get adsorbed on them, thereby bridging the plates. Under large amplitude oscillatory shear, such bridges are stretched, and this results in the strain-hardening behavior. The onset of strain hardening is predicted to be dependent only on the average distance separating the two plates and is independent of the frequency of the oscillations and the polymer molecular weight.  相似文献   

10.
Electrofreezing of confined water   总被引:1,自引:0,他引:1  
We report results from molecular dynamics simulations of the freezing transition of TIP5P water molecules confined between two parallel plates under the influence of a homogeneous external electric field, with magnitude of 5 V/nm, along the lateral direction. For water confined to a thickness of a trilayer we find two different phases of ice at a temperature of T=280 K. The transformation between the two, proton-ordered, ice phases is found to be a strong first-order transition. The low-density ice phase is built from hexagonal rings parallel to the confining walls and corresponds to the structure of cubic ice. The high-density ice phase has an in-plane rhombic symmetry of the oxygen atoms and larger distortion of hydrogen bond angles. The short-range order of the two ice phases is the same as the local structure of the two bilayer phases of liquid water found recently in the absence of an electric field [J. Chem. Phys. 119, 1694 (2003)]. These high- and low-density phases of water differ in local ordering at the level of the second shell of nearest neighbors. The results reported in this paper, show a close similarity between the local structure of the liquid phase and the short-range order of the corresponding solid phase. This similarity might be enhanced in water due to the deep attractive well characterizing hydrogen bond interactions. We also investigate the low-density ice phase confined to a thickness of 4, 5, and 8 molecular layers under the influence of an electric field at T=300 K. In general, we find that the degree of ordering decreases as the distance between the two confining walls increases.  相似文献   

11.
The response of a room temperature molten salt to an external electric field when it is confined to a nanoslit is studied by molecular dynamics simulations. The fluid is confined between two parallel and oppositely charged walls, emulating two electrified solid-liquid interfaces. Attention is focused on structural, electrostatic, and dynamical properties, which are compared with those of the nonpolarized fluid. It is found that the relaxation of the electrostatic potential, after switching the electric field off, occurs in two stages. A first, subpicosecond process accounts for 80% of the decay and is followed by a second subdiffusive process with a time constant of 8 ps. Diffusion is not involved in the relaxation, which is mostly driven by small anion translations. The relaxation of the polarization in the confined system is discussed in terms of the spectrum of charge density fluctuations in the bulk.  相似文献   

12.
A new concept of designing and synthesizing highly dispersed ionic liquids was developed through physical confinement or encapsulation of them into silica gel matrix with sol-gel process. A series of silica gel confined ionic liquids were synthesized through this process and characterized by diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) and FTRaman analysis, and abnormal FT-IR and FTRaman spectra were observed. The silica gel matrixes confined ionic liquid BMImBF(4) were further characterized by BET analysis after the ionic liquid was almost completely washed out by acetone under refluxing conditions and meso-porous silica gel matrixes were obtained according to the N(2) adsorption measurements, which suggested that the particle-size of the dispersed ionic liquids was in nano-scale. In consideration of the results obtained together, it could be found that the abnormal FT-IR and FTRaman spectra were changed with the pore-size of the silica gel matrix. For example, obvious abnormal FT-IR and FTRaman spectra appeared when the particle-size of ionic liquid BMImBF(4) is smaller than 11 nm while they disappeared again if the corresponding particle-size >11 nm. These results indicated that nano-effect, or restriction effect, produced from the nano-pores of silica gel was the reason for the abnormal FT-IR and FTRaman spectra.  相似文献   

13.
We study the structural and dynamical properties of paramagnetic colloidal spheres interacting as repulsive dipoles in two dimensions and confined between parallel hard walls. We observed that the structure and dynamics of the self-assembled colloids are strongly dependent upon the width of the confining channel. The system exhibits re-entrant behavior as a function of the channel width, transitioning from solid-like to liquid-like repeatedly in excellent agreement with simulation results. For large channels, an ordered layered structure self-assembles near the walls, but this local structure is not commensurate with the bulk structure, leading to localized stable defects.  相似文献   

14.
We present the molecular dynamics study of benzene molecules confined into the single wall carbon nanotube. The local structure and orientational ordering of benzene molecules are investigated. It is found that the molecules mostly group in the middle distance from the axis of the tube to the wall. The molecules located in the vicinity of the wall demonstrate some deviation from planar shape. There is a tilted orientational ordering of the molecules which depends on the location of the molecule. It is shown that the diffusion coefficient of the benzene molecules is very small at the conditions we report here. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Glycolipids (amphiphiles that bear oligosaccharides as their hydrophilic headgroups) are of importance both scientifically and technically. This review describes recent advances in our understanding of the molecular correlations in phase behavior in aqueous glycolipids over the past several years. In the first part, we discuss how headgroup stereochemistry affects the phase behavior of glycolipids both in two- and three-dimensional systems. In the second part, we discuss the effects of alkyl chain structure and phase behavior of phytanyl-chained glycolipid/water systems. The physical properties of glycolipid/water systems depend strongly on the inter-headgroup interactions that are related to such factors as stereochemistry (conformation) and size of headgroups, type of sugar residues involved, alkyl chain structure, etc. Thus, apart from the conventional concept like ‘hydrophilic/lipophilic balance', explicit accounts of headgroup interactions are crucial to control the particular glycolipid/water system concerned. This is in marked contrast to the conventional amphiphile/water systems where the inter-headgroup interactions are in most cases simply repulsive.  相似文献   

16.
The effect of water molecule adsorption on the surface of (5,0) zigzag boron nitride nanotube was studied by density functional theory calculations. Geometrical optimizations were carried out at the B3LYP/6-31+G* level of theory. Six different configurations of water molecule(s) adsorption process including monomer (1WB and 1WN), dimer (2WB, 2WNN, and 2WBN), and trimer (3WB) clusters were obtained. The strengths of interactions were analyzed by the equilibrium geometries, binding energies, and charge transfer. The natural bonding analysis was also performed to investigate electronic properties. The results reveal that the adsorption of water is more favorable as the water cluster size increases.  相似文献   

17.
The distribution of hydrophobic solutes, such as methane, enclosed in a nanosized water droplet contained in a reverse micelle of diameter 2.82 nm is investigated using Monte Carlo simulations. The effect of the hydrophobic solute's atomic diameter on the solute-solute potential of mean force is also studied. The study reveals that confinement has a strong influence on the solute's tendency to associate. The potential of mean force exhibits only a single minimum, indicating that the contact pair is the only stable configuration between solutes. The solvent-separated pair that is universally observed for small solutes in bulk water is conspicuously absent. This enhanced hydrophobic effect is attributed to the lack of sufficient water to completely hydrate and stabilize the solvent-separated configurations. The study is expected to be important in understanding the role of hydrophobic forces during protein folding and nucleation under confinement.  相似文献   

18.
We report results from molecular dynamic simulations of the freezing transition of liquid water in the nanoscale hydrophobic confinement under the influence of a homogeneous external magnetic field of 10 T along the direction perpendicular to the parallel plates. A new phase of bilayer crystalline ice is obtained at an anomalously high freezing temperature of 340 K. The water-to-ice translation is found to be first order. The bilayer ice is built from alternating rows of hexagonal rings and rhombic rings parallel to the confining plates, with a large distortion of the hydrogen bonds. We also investigate the temperature shifts of the freezing transition due to the magnetic field. The freezing temperature, below which the freezing of confined water occurs, shifts to a higher value as the magnetic field enhances. Furthermore, the temperature of the freezing transition of confined water is proportional to the denary logarithm of the external magnetic field.  相似文献   

19.
Water within pores of cementitious materials plays a crucial role in the damage processes of cement pastes, particularly in the binding material comprising calcium-silicate-hydrates (C-S-H). Here, we employed Grand Canonical Monte Carlo simulations to investigate the properties of water confined at ambient temperature within and between C-S-H nanoparticles or "grains" as a function of the relative humidity (%RH). We address the effect of water on the cohesion of cement pastes by computing fluid internal pressures within and between grains as a function of %RH and intergranular separation distance, from 1 to 10 ?. We found that, within a C-S-H grain and between C-S-H grains, pores are completely filled with water for %RH larger than 20%. While the cohesion of the cement paste is mainly driven by the calcium ions in the C-S-H, water facilitates a disjoining behavior inside a C-S-H grain. Between C-S-H grains, confined water diminishes or enhances the cohesion of the material depending on the intergranular distance. At very low %RH, the loss of water increases the cohesion within a C-S-H grain and reduces the cohesion between C-S-H grains. These findings provide insights into the behavior of C-S-H in dry or high-temperature environments, with a loss of cohesion between C-S-H grains due to the loss of water content. Such quantification provides the necessary baseline to understand cement paste damaging upon extreme thermal, mechanical, and salt-rich environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号