首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Selenostannates from Aqueous Solution, Preparation and Structure of Na4Sn2Se6 · 13 H2O The dimeric anion Sn2Se64? is prepared by reaction of SnSe2 with alkali metal selenide in a 1:1 molar ratio. The orange-red hydrated sodium salt Na4Sn2Se6 · 13 H2O is characterized by a complete X-ray structure analysis and by its vibrational spectrum. The compound is triclinic (P1 ) with a = 7.106(2), b = 10.330(2), c = 19.009(4) Å, α = 78.60(2), β = 85.66(2), γ = 72.85(2)° (?130°C), Z = 2. It contains isolated Sn2Se64? anions consisting of two edge-sharing tetrahedra [Sn? Se 2.456(1)–2.589(1) Å] which are in contact to the hydrated Na+ ions within an extensive hydrogen bridge system. Raman-active vibrations are observed at 260, 202, 188, 116, 93, and 78 cm?1.  相似文献   

2.
Reactions of rubidium or barium salts of the ortho‐selenostannate anion, [Rb4(H2O)4][SnSe4] ( 1 ) or [Ba2(H2O)5][SnSe4] ( 2 ) with Zn(OAc)2 or ZnCl2 in aqueous solution yielded two novel compounds with different ternary Zn/Sn/Se anions, [Rb10(H2O)14.5][Zn4(μ4‐Se)2(SnSe4)4] ( 3 ) and [Ba5(H2O)32][Zn5Sn(μ3‐Se)4(SnSe4)4] ( 4 ). 1 – 4 have been determined by means of single crystal X‐ray diffraction: 1 : triclinic space group lattice dimensions at 203 K: a = 8.2582(17) Å, b = 10.634(2) Å, c = 10.922(2) Å, α = 110.16(3)°, β = 91.74(3)°, γ = 97.86(3)°, V = 888.8(3) Å3; R1 [I > 2σ(I)] = 0.0669; wR2 = 0.1619; 2 : orthorhombic space group Pnma; lattice dimensions at 203 K: a = 17.828(4) Å, b = 11.101(2) Å, c = 6.7784(14) Å, V = 1341.5(5) Å3; R1 [I > 2σ(I)] = 0.0561; wR2 = 0.1523; 3 : triclinic space group ; lattice dimension at 203 K: a = 17.431(4) Å, b = 17.459(4) Å, c = 22.730(5) Å, α = 105.82(3)°, β = 99.17(3)°, γ = 90.06(3)°, V = 6563.1(2) Å3; R1 [I > 2σ(I)] = 0.0822; wR2 = 0.1782; 4 : monoclinic space group P21/c; lattice dimensions at 203 K: a = 25.231(5) Å, b = 24.776(5) Å, c = 25.396(5) Å, β = 106.59(3)°, V = 15215.0(5) Å3; R1 [I > 2σ(I)] = 0.0767; wR2 = 0.1734. The results serve to underline the crucial role of the counterion for the type of ternary anion to be observed in the crystal. Whereas Rb+(aq) stabilizes a P1‐type Zn/Sn/Se supertetrahedron in 3 like K+, the Ba2+(aq) ions better fit to an anionic T3‐type Zn/Sn/Se cluster arrangement as do Na+ ions. It is possible to estimate a radius:charge ratio for the stabilization of the two structural motifs.  相似文献   

3.
Selenogermanates from Aqueous Solution: Preparation and Structure of Na4Ge2Se6 · 16 H2O Selenogermanates(IV) are prepared from aqueous solutions by reaction of alkali selenides with GeSe2. Na4Ge2Se6 · 16 H2O, being obtained from stoichiometric 1:1 quantities, is characterized by a complete X-ray structure analysis and by vibrational spectra. The compound is monoclinic (P21/c) with a = 9.894(4), b = 11.781(5), c = 12.225(6) Å, β = 92.90(4)°, Z = 2. It contains isolated Ge2Se64? anions consisting of two edge-sharing tetrahedra [Ge? Se 2.303(2)–2.419(2) Å] which are in contact to the hydrated octahedral [Na(H2O)6]+ ions through Se ? H? O bridges within an extensive hydrogen bridge system. Raman-active vibrations are observed at 306, 294, 207, 139, and 121 cm?1. Adamantane-like Ge4Se104? can be prepared in a similar way as Ge2Se64? if a 1:2 molar ratio of alkali selenide to GeSe2 is employed.  相似文献   

4.
Cis-[Cr(en)2F2]ClO4 · NaClO4 · H2O (en = 1,2-diaminoethane) was obtained as the red crystalline product from the saturated solutions of both NaClO4 and cis-[Cr(en)2F2]ClO4 in water. The compound crystallizes in the monoclinic P21/n (No.14) space group with a = 9.540(2), b = 11.840(2); c = 14.659(3) Å, β = 95.02(1)°, Z = 4. The unit cell of the racemic crystal contains cis-[Cr(en)2F2]+ in the Λλλ and Δδδ enantiometric forms, Na+, ClO4?, and lattice H2O. Cr has octahedral coordination. Cr? F and Cr? N bonds are 1.868(4), 1.887(5) and from 2.067(2) to 2.100(8) Å. Mean Cl? O bond is 1.38 Å. Na+ ions are in the distorted octahedral environment. Infrared spectrum confirms the presence of the lattice H2O and proves the cis structure of [Cr(en)2F2]+.  相似文献   

5.
Preparation and Crystal Structure of Ethylenediammonium Selenostannates(IV) and [2 SnSe2 · en]∞ The selenostannates(IV) [enH2]2[Sn2Se6] · en 1 and [enH2][Sn3Se7] · 1/2en 2 have been prepared by the methanolothermal reaction of SnSe2 with ethylenediamine (en) (160°C, 13 bar) in the presence of respectively Se or BaSe. The [Sn2Se6]4? anion in 1 consists of two edgebridged SnSe4 tetrahedra and displays crystallographic Ci symmetry. The crystal structure of 2 contains polyselenostannate(IV) sheet anions [Sn2Se72], for which the basic elements are trigonal SnSe5 bipyramids. Each of the three symmetry independent Sn atoms is linked to the other Sn atoms via Sn? Se? Sn bridges leading to the formation of Sn3Se10 units. Methanolothermal reaction of SnSe2 with en alone yields the edge-bridged chain structure [2 SnSe2 en]∞ 3 , in which each of the Sn atoms is bonded to four Se atoms. Every second Sn atom is also coordinated by an en molecule and displays, therefore, an octahedral geometry. The remaining Sn atoms are coordinated tetrahedrally by Se atoms.  相似文献   

6.
Na6Sn4Se11 · 22 H2O can be crystallised at –8 °C as yellow‐orange needles from the 1 : 2 H2O/CH3OH mother liquor of a superheated reaction mixture of NaOH(s), Sn and Se. The bicyclic [Sn4Se11]6– anion exhibits crystallographic C2 symmetry and is composed of corner‐bridged SnSe4 tetrahedra. Two opposite tin atoms of an Sn4Se4 8‐membered ring are linked by a common Se atom, thereby affording two 6‐membered boat‐shaped Sn3Se3 rings with a shared Sn–Se–Sn bridging unit. [Sn4Se11]6– thus represents the immediate precursor of the well‐known adamantane‐like [Sn4Se10]4– anion.  相似文献   

7.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

8.
X‐ray crystal structures are reported for Na6[RuO2{TeO4(OH)2}2]·16H2O and Na5[Ag{TeO4(OH)2}2]·16H2O which contain respectively RuVI and AgIII coordinated to chelating bidentate tellurate ([TeO4(OH)2]4−) groups. Na6[RuO2{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 6.9865(1), b = 8.7196(2), c = 11.7395(2)Å, α = 74.008(1), β = 79.954(1), γ = 88.514(1)°; R1 = 0.025. Na5[Ag{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 5.888(1), b = 8.932(1), c = 12.561(2)Å, α = 98.219(6), β = 97.964(9), γ = 93.238(14)°; R1 = 0.047.  相似文献   

9.
Concentrated aqueous solutions of magnesium chloride and calcium nitrate, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4 · H2O, the isolation of the earth alkaline salts MgC4S4 · 6 H2O ( 1 ) and CaC4S4 · 4 H2O ( 2 ) as orange and red crystals. The crystal structure determinations ( 1 : monoclinic, C2/c, a = 17.2280(7), b = 5.9185(2), c = 13.1480(4) Å, β = 104.730(3)°, Z = 4; 2 : monoclinic, P21/m, a = 7.8515(3), b = 12.7705(5), c = 10.6010(4) Å, β = 93.228(2)°, Z = 4) show the presence of C4S42? ions with almost undistorted D4h symmetry having average C–C and C–S bond lengths of 1.451Å and 1.659Å for 1 and 1.451Å and 1.655Å for 2 . The structure of 1 contains discrete, octahedral [Mg(H2O)6]2+ complexes. Several O–H····O and O–H····S bridges with H····O and H····S distances of less than 2.50Å connect cations and anions. The structure of 2 is built of concatenated, edge‐sharing Ca(H2O)6S2 polyhedra. The Ca2+ ions have the coordination number eight, C4S42? act as a chelating ligands towards Ca2+ with Ca–S distances of 3.14Å. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

10.
The Crystal Structure of the Sodium Oxohydroxoaluminate Hydrate Na2[Al2O3(OH)2] · 1.5 H2O The crystal structure of the sodium oxohydroxoaluminate hydrate Na2[Al2O3(OH)2] ·s 1.5 H2O (up to now described as Na2O · Al2O3 · 2.5 H2O and Na2O · Al2O3 · 3 H2O, respectively) was solved. The X-ray single crystal diffraction analysis (tetragonal, space group P-421m, a = 10.522(1) Å, c = 5.330(1) Å, Z = 4) results in a polymeric layered structure, consisting of AlO3/2(OH) tetrahedral groups. Between these layers the Na+ ions are situated, which form tetrameric groups of face-linked NaO6 octahedra. The involved O2? ions are due to Al? O? Al bridges, Al? OH groups and water of crystallization. 27Al and 23Na MAS NMR investigations confirm the crystal structure analysis. The relations between the crystallization behaviour of the compound and the constitution of the aluminate anions in the corresponding sodium aluminate solution and in the solid, respectively, are discussed.  相似文献   

11.
Preparation and Crystal Structure of Na2Sn2Se5 A Novel Chalcogenostannate(IV) with Layered Complex Anions Na2Sn2Se5 was obtained from a stoichiometric mixture of Na2Se, Sn, and Se powders through a solid state reaction at 450 °C. It crystallizes orthorhombic, space group Pbca with a = 13.952(6) Å, b = 12.602(2) Å, c = 11.524(2) Å; Z = 8 and undergoes peritectic decomposition at 471(2) °C. The crystal structure was determined at ambient temperature from diffractometer data (MoKα‐radiation) and refined to a conventional R of 0.040 (1490 Fo's, 83 variables). Na2Sn2Se5 is characterized by layered complex anions running parallel to (100) which are built up by SnSe4 tetrahedra sharing common corners. The mean Sn–Se bond length calculates as 2.252(2) Å. The Na+ cations are coordinated to 6 or 7 Se in irregular configurations. The crystal structure can be described as a stacking of distorted c. p. 36 chalcogen layers and mixed square 44 alkali‐chalcogen layers.  相似文献   

12.
Selenoarsenates from Aqueous Solutions. Crystal Structures of Na3AsO3Se · 12 H2O and Na3AsSe4 · 9 H2O Selenoarsenates are obtained from aqueous solutions as colourless hydrated salts by reactions either of As2O3 with NaOH and selenium or of Na2Se with As2Se3 and selenium under strictly anaerobic conditions. Besides of tetrahedral anions AsO3Se3− and AsSe43−, extensive hydrogen bridge systems with rather strong O H …︁s Se bonds determine the structures. Na3AsO3Se · 12 H2O is orthorhombic (P212121) with a = 9.220(3), b = 13.018(3), c = 14.048(4) Å, Z = 4. Cubic Na3AsSe4 ·s 9H2O (P213) with a = 12.149(3) Å is isotypic to Schlippe's salt, Na3SbS4 · 9 H2O. The full X-ray structure analyses from four-circle diffractometer data show the selenium atoms of the AsO3Se3− and AsSe43− anions to be H-acceptors in six Se …︁ H O hydrogen bridges with d(Se …︁ O) = 3.357–3.693 Å and d(Se …︁ H) = 2.47–2.89 Å. The As Se bond in AsO3Se3− (2.283 Å) is shorter than in AsSe43− (2.319 Å).  相似文献   

13.
Three complexes, Na4[DyIII(dtpa)(H2O)]2?·?16H2O, Na[DyIII(edta)(H2O)3]?·?3.25H2O and Na3[DyIII (nta)2(H2O)]?·?5.5H2O, have been synthesized in aqueous solution and characterized by FT–IR, elemental analyses, TG–DTA and single-crystal X-ray diffraction. Na4[DyIII(dtpa)(H2O)]2?·?16H2O crystallizes in the monoclinic system with P21/n space group, a?=?18.158(10)?Å, b?=?14.968(9)?Å, c?=?20.769(12)?Å, β?=?108.552(9)°, V?=?5351(5)?Å3, Z?=?4, M?=?1517.87?g?mol?1, D c?=?1.879?g?cm?3, μ?=?2.914?mm?1, F(000)?=?3032, and its structure is refined to R 1(F)?=?0.0500 for 9384 observed reflections [I?>?2σ(I)]. Na[DyIII(edta)(H2O)3]?·?3.25H2O crystallizes in the orthorhombic system with Fdd2 space group, a?=?19.338(7)?Å, b?=?35.378(13)?Å, c?=?12.137(5)?Å, β?=?90°, V?=?8303(5)?Å3, Z?=?16, M?=?586.31?g?mol?1, D c?=?1.876?g?cm?3, μ?=?3.690?mm?1, F(000)?=?4632, and its structure is refined to R 1(F)?=?0.0307 for 4027 observed reflections [I?>?2σ(I)]. Na3[DyIII(nta)2(H2O)]?·?5.5H2O crystallizes in the orthorhombic system with Pccn space group, a?=?15.964(12)?Å, b?=?19.665(15)?Å, c?=?14.552(11)?Å, β?=?90°, V?=?4568(6)?Å3, Z?=?8, M?=?724.81?g?mol?1, D c?=?2.102?g?cm?3, μ?=?3.422?mm?1, F(000)?=?2848, and its structure is refined to R 1(F)?=?0.0449 for 4033 observed reflections [I?>?2?σ(I)]. The coordination polyhedra are tricapped trigonal prism for Na4[DyIII(dtpa)(H2O)]2?·?16H2O and Na3[DyIII(nta)2(H2O)]?·?5.5H2O, but monocapped square antiprism for Na[DyIII(edta)(H2O)3]?·?3.25H2O. The crystal structures of these three complexes are completely different from one another. The three-dimensional geometries of three polymers are 3-D layer-shaped structure for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 1-D zigzag type structure for Na[DyIII(edta)(H2O)3]?·?3.25H2O and a 2-D parallelogram for Na3[DyIII(nta)2(H2O)]?·?5.5H2O. According to thermal analyses, the collapsing temperatures are 356°C for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 371°C for Na[DyIII(edta)(H2O)3]?·?3.25H2O and 387°C for Na3[DyIII(nta)2(H2O)]?·?5.5H2O, which indicates that their crystal structures are very stable.  相似文献   

14.
Ternary Hydroxides. I. Synthesis, Structure, and Properties of Li2[Sn(OH)6] · 2 H2O Colourless crystals of Li2[Sn(OH)6] · 2 H2O were synthesized by reaction of SnCl4 with LiOH in aqueous solution. The crystal structure was determined from single crystal data. Li2[Sn(OH)6] · 2 H2O: monoclinic, P21/n (Nr. 14), a = 502.3(1), b = 692.3(1), c = 1020.2(3) pm, β = 99.78(1)°, V = 349.6(2) · 106 pm3, Z = 2, R/Rw = 0.0192/0.0472, N(I) > 2σ(I) = 1527, N(Par.) = 54. Within the crystal structure only slightly distorted octahedrally [Sn(OH)6]2? ions are bonded via hydrogen bonds with water molecules forming layers, which themselve are linked by tetrahedrally coordinated Li ions; the structure is in accordance with the IR-data and the results of the 119Sn solid state NMR-spectroscopy; the hydrat water is eliminated at 117.1°C, the condensation reaction – forming the ternary oxide – takes place at 257.7°C.  相似文献   

15.
The reaction between (NH4)[MoBr5 · H2O] and pyridine in acetonitrile (CH3CN) at room temperature results in the mixture of cis- and trans-(pyH)[MoBr4py2] which can be separated on the basis of solubility. cis-M[MoBr4py2] · ? H2O (M = NH4+, Rb+, Cs+), cis-(bipyH)[MoBr4py2] (bipy = 2,2′-bipyridil) and cis-(PPh4)[MoBr4py2], were prepared from cis-(pyH)[MoBr4py2]. At the temperature of boiling acetonitrile irreversible cis to trans isomerisation takes place. Bromine oxydizes cis isomers at room temperature to trans-MoBr4py2. The compounds were characterised by chemical analysis, infrared, UV-VIS spectroscopy, conductivity measurements and powder diffraction. The crystal structure of cis-(NH4)[MoBr4py2] · ? H2O has been determined: rhombohedral, R3c, (No. 161), a = 15.809(3) Å, β = 112.79(2)°, Z = 6, DC = 2.29, DO = 2.27(3) g/cm3, V = 2 601(1) Å3, R1 = 0.046, Rw = 0.068. Average Mo? Br and Mo? N(pyridine) distances within the anion are 2.58(2) and 2.20(2) Å. cis-Rb[MoBr4py2] · ? H2O and cis-Cs[MoBr4py2] · ? H2O are isostructural with cis-(NH4)[MoBr4py2] · ? H2O.  相似文献   

16.
Nonasodium Bis(hexahydroxoaluminate) Trihydroxide Hexahydrate (Na9[Al(OH)6]2(OH)3 · 6H2O) – Crystal Structure, NMR Spectroscopy and Thermal Behaviour The crystal structure of the nonasodium bis(hexahydroxoaluminate) trihydroxide hexahydrate Na9[Al(OH)6]2(OH)3 · 6H2O (4.5 Na2O Al2O3 · 13.5 H2O) (up to now described as 3 Na2O · Al2O3 · 6H2O, 4Na2O · Al2O3 · 13 H2O and [3 Na2O · Al2O3 · 6H2O] [xNaOH · yH2O], respectively) was solved. The X-ray single crystal diffraction analysis (triclinic, space group P1 , a = 8.694(1) Å, b = 11.344(2) Å, c = 11.636(3) Å, α = 74.29(2)°, β = 87.43(2)°, γ = 70.66(2)°, Z = 2) results in a structure, consisting of monomeric [Al(OH)6]3? aluminate anions, which are connected by NaO6 octahedra groups. Furthermore the structure contains both, two hydroxide anions only surrounded by water of crystallization and OH groups of [Al(OH)6]3? aluminate anions and a hydroxide anion involved in three NaO6 coordination octahedra directly and moreover connected with a water molecule by hydrogen bonding. The results of 27Al and 23Na-MAS-NMR investigations, the thermal behaviour of the compound and possible relations between the crystal structure and the conditions of coordination in the corresponding sodium aluminate solution are discussed as well.  相似文献   

17.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

18.
Piaselenole—Piaselenolium—Pentaiodide (C6H4N2Se · C6H5N2Se+ I3? · I2), a Structure with Polyiodide Layers The title compound crystallizes in the monoclinic space group P21/n with a = 9.320(3), b = 13.812(2), c = 17.159(3) Å, β = 96.11(2)°, V = 2196.3 Å3, Z = 4. There occur no isolated I5? anions but layer-shaped polyiodide aggregates built up by linear, asymmetric I3? anions and I2 molecules. Almost linear triiodide chains are connected by I2 molecules in a novel type of arrangement to form slightly puckered layers. The polyiodide layers contain several substructures known from other examples. The piaselenole and its conjugated acid, the piaselenolium cation, form a ribbon-like quasi-polymer in which the two components are alternating. They are connected in turns by a linear NH? N hydrogen bridge (N? N: 2.844 Å) and by a so called (SeN)2-connectivity parallelogram, in which Se? N bonds and Se? N contacts are adjacent. Here we found a very short Se? N contact distance of 2.691 Å. The bond distances of piaselenole (Se? N: 1.787(3) Å, N? C: 1.318(5) Å, C? C: 1.453(8) Å) and also the angles are equal or similar to those occuring in other 1,2,5-selenadiazoles. The protonation of one N in the SeN2 unit results in a loss of symmetry and significant changes in bonding distances and angles.  相似文献   

19.
The title compound, tripotassium sodium tritin octaselenide, K3NaSn3Se8, has a molecular (zero‐dimensional) structure containing trimeric [Sn3Se8]4? units which consist of three edge‐sharing SnSe4 tetrahedra. The [Sn3Se8]4? anions and the tetrahedrally coordinated Na+ cations are arranged in an alternating fashion along the c axis to form SiS2‐like chains, which are then separated by eight‐coordinate K+ cations. The Sn—Se bond distances are normal, being in the range 2.477 (1)–2.612 (1) Å.  相似文献   

20.
The complexes [NO2BzPz]2[Ni(mnt)2] (1) and [BrBzPz]2[Pd(mnt)2] (2) have been prepared by reaction of Na2mnt, NiCl2·6H2O or PdCl2, and the corresponding 1-(R-benzyl)pyrazinium bromide salt (R = 4′-nitro, R = 4′-bromo). Crystallographic data for 1: monoclinic, P21/n, a = 7.3494(15), b = 15.223(3), c = 15.054(3)?Å, β = 102.42(3)°, V = 1644.8(6)?Å3, Z = 2. Data for 2: monoclinic, P21/n, a = 7.399(2), b = 19.024(4), c = 12.224(2)?Å, β = 94.62(3)°, V = 1715.0(7)?Å3, Z = 4. In both complexes, the [M(mnt)2]2? anion has a centre of symmetry at the metal atom and two cations are related to each other by the symmetry centre. The [M(mnt)2]2? anion exhibits a quasi-planar structure in both complexes, which show similar crystal packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号