首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
The drawing behavior of linear polyethylene homopolymers with weight-average molecular weights (M?w) from 101,450 to ca. 3,500,000 has been studied over the temperature range 75°C to the melting point. In all cases 1-cm gauge length samples were drawn in an Instron tensile testing machine at a constant cross-head speed of 10 cm/min. With the exception of the lowest molecular weight polymer, it was found that increasing the draw temperature led to substantial increases in the maximum draw ratio which could be achieved, and that this increased monotonically with increasing draw temperature. Measurements of the Young's modulus of the drawn materials showed, however, that the unique relationship between modulus and draw ratio previously established for drawing at 75°C was not maintained to the highest draw temperatures. The highest draw temperature at which this relation held was found to be strongly molecular weight dependent, increasing from ca. 80 to ca. 125°C when M?w increased from 101,450 to 800,000. In all cases conditions could be found for drawing samples to draw ratios of 20 or more with correspondingly large values of the Young's modulus.  相似文献   

2.
The drawing behavior of a series of linear polyethylene homopolymers with weight-average molecular weight (M?w) ranging from 67,800 to ~3,500,000 and variable distribution (M?w/M?n = 5.1?20.9) has been studied. Sheets were prepared by two distinct routes: either by quenching the molten polymer into cold water or by slow cooling below the crystallization temperature (~120°C) followed by quenching into cold water. When the samples (2 cm long) were drawn in air at 75°C using a crosshead speed of 10 cm/min it was found that for low M?w polymers the initial thermal treatment has a dramatic effect on the rate at which the local deformation proceeds in the necked region. At high M?w such effects are negligible. An important result was that comparatively high draw ratios (λ > 17) and correspondingly high Young's moduli could be obtained for a polymer with M?w as high as 312,000. It is shown how some of the structural features of the initial materials (mainly studied by optical microscopy, small-angle x-ray scattering and low-frequency laser Raman spectroscopy) can be interpreted in terms of the molecular weight and molecular weight distribution of the polymers. Although crystallization and morphology can be important at low M?w, it suggested that the concept of a molecular network which embraces both crystalline and noncrystalline material is more helpful in understanding the drawing behavior over the whole range of molecular weights.  相似文献   

3.
The influence of initial polymer concentration in solution (c), weight-average molecular weight (Mω), and drawing temperature on the solid-state drawing behavior of linear polyethylenes was investigated. Optimum conditions, with respect to maximum attainable draw ratio, are observed in isothermal drawing experiments. Moreover, it is shown that high maximum attainable draw ratios can also be obtained upon multistage drawing of UHMW-PE (ultrahigh-molecular-weight polyethylene, Mω > 106 g/mol) gel films cast from concentrated solutions. The high maximum attainable draw ratio in combination with the high molecular weight (Mω > 106 g/mol) and polymer concentration (c = 10% w/v) is of particular interest because it results in tapes or fibers with a high Young's modulus (100 GPa) and tensile strength (2.5–3.5 GPa). It is also shown that the maximum attainable draw ratio of polyethylenes scales with the Bueche parameter (c · Mω) to the ?0.5 power. This experimental observation indicates that intermolecular interactions not only dominate the rheological properties of polyethylene melts and concentrated solutions, but also strongly influence the solid-state drawing behavior of linear polyethylenes.  相似文献   

4.
New conjugated oligomers were prepared by reacting phenylacetylene under high pressure of 0.11 to 0.92 GPa at 100–200°C for 0–5 h. The number-average molecular weight M?n, the weight-average molecular weight M?w, and the oligomer yield increased with pressure, tem-perature, and time. The average molecular weight of the oligomer showed the maximum value (M?n: 830, M?w: 2400) under 0.92 GPa, the maximum pressure, where phenylacetylene was oligomerized at a constant temperature. The structure of the oligomer was investigated from ESR, infrared, UV–VIS, field desorption mass (FDMS) spectra, and 13C NMR spec-trum. Analysis of the FDMS spectrum revealed that the molecular weight of the oligomer was multiple of the monomer. 13C NMR spectrum of the oligomer showed the absence of sp-carbon (? C?). We found that the oligomer had a cyclic structure. The cyclic oligomers of pentamer or more were new compounds. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
The effects of molecular weight (MW) and MW distribution on the maximum tensile properties of polyethylene (PE), achieved by the uniaxial drawing of solution‐grown crystal (SGC) mats, were studied. The linear‐PE samples used had wide ranges of weight‐average (Mw = 1.5–65 × 105) and number‐average MWs (Mn = 2.0–100 × 104), and MW distribution (Mw/Mn = 2.3–14). The SGC mats of these samples were drawn by a two‐stage draw technique, which consists of a first‐stage solid‐state coextrusion followed by a second‐stage tensile drawing, under controlled conditions. The optimum temperature for the second‐stage draw and the resulting maximum‐achieved total draw ratio (DRt) increased with the MW. For a given PE, both the tensile modulus and strength increased steadily with the DRt and reached constant values that are characteristic for the sample MW. The tensile modulus at a given DRt was not significantly affected by the MW in the lower DRt range (DRt < 50). However, both the maximum achieved tensile modulus (80–225 GPa) and strength (1.0–5.6 GPa), as well as those at higher DRts > 50, were significantly higher for a higher MW. Although the maximum modulus reached 225 ± 5 for Mn ≥ 4 × 105, the maximum strength continued to increase with Mn even for Mn > 4 × 105, showing that strength is more strongly dependent on the Mn, even at higher Mn. Furthermore, it was found that each of the maximum tensile modulus and strength achieved could be expressed by a unique function of the Mn, independently of the wide variations of the sample MW and MW distribution. These results provide an experimental evidence that the Mn has a crucial effect on the tensile properties of extremely drawn and chain‐extended PE fibers, because the structural continuity along the fiber axis increases with the chain length, and hence with the Mn. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 153–161, 2006  相似文献   

6.
The recently developed technique of solid-state coextrusion for ultradrawing semicrystalline thermoplastics has been applied in the preparation of self-reinforced high-density polyethylene extrudates. The extrudates consist of definite core and sheath phases composed of different molecular weights (Mw) in the range of 60,000–250,000 and different molecular weight distributions (Mw/Mn = 3.0–20). Concentric billets of two different phases were prepared for extrusion by in serting a polyethylene rod within a tubular billet of a different high-density polyethylene followed by melting the two phases to obtain bonding between them. The billet was then split longitudinally to increase extrusion speed and extruded at 120°C, 0.23 GPa through a conical die of extrusion draw ratio 25. Extrudates of high tensile modulus (38 GPa) and strength (0.50 GPa) could be produced in a steady state process at a rate near 0.25 cm/min. The tensile properties of the extrudates from either the single or concentric billets increased with average molecular weight and were insensitive to the molecular weight distribution of the constituent phases. Thermal analysis indicated a high deformation efficiency for the sheath and core phases of the extrudates by the coextrusion technique.  相似文献   

7.
The drawing behavior of the ultra‐high molecular weight polyethylene (UHMW‐PE) melts has been studied by comparing the stress/strain curves for two types of samples as polymerized using conventional Ziegler and newer metallocene catalyst systems. Two UHMW‐PE samples, having the same viscosity average molecular weight of 3.3 × 106, but different molecular weight distribution, have been drawn from melt at special conditions. The sample films for drawing were prepared by compression molding of reactor powders at 180°C in the melt. Differences in the structural changes during drawing and resultant properties, ascribable to their broad or narrow molecular weight distribution, were estimated from tensile tests, SEM observations, X‐ray measurements and thermal analyses. The metallocene‐catalyzed sample having narrower molecular weight distribution, could be effectively drawn from the melt up to a maximum draw ratio (DR) of 20, significantly lower than that obtained for the Ziegler‐catalyzed sample, ∼ 50. The stress/strain curves on drawing were remarkably influenced by draw conditions, including draw temperature and rate. However, the most effective draw for both was achieved at 150°C and a strain rate of 5 min−1, independent of sample molecular weight distribution. The efficiency of drawing, as evaluated by the resultant tensile properties as a function of DR, was higher for the metallocene‐catalyzed sample having narrower molecular weight distribution. Nevertheless, the maximum achieved tensile modulus and strength for the Ziegler sample, 50–55 and 0.90 GPa, respectively, were significantly higher than those for the metallocene sample, 20 and 0.65 GPa, respectively, reflecting the markedly higher drawability for the former than the latter. The stress/strain behavior indicated that the origin of differences during drawing from the melt could be attributed to the ease of chain relaxation for the lower molecular weight chains in the melt. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1921–1930, 1999  相似文献   

8.
The technique of gel-permeation chromatography (GPC) has been developed as a method for measuring molecular weight distribution in pitch materials. Molecular weight calibration data were obtained from measurements made on GPC fractions collected from a standard pitch. By solubilization of the polymeric portion of pitch through a reduction with lithium in ethylenediamine, the molecular weight range for analysis was extended to in excess of 3000. Mass spectroscopy has been used to further analyze some of the GPC fractions. The GPC calibration data can be employed, with the aid of computer analysis, to determine quantitatively number-average molecular weights M?n weight-average molecular weights M?w, and molecular weight distribution D (= M?w/M?n) in pitch materials.  相似文献   

9.
The tensile drawing behavior of a range of selected polyethylene copolymers has been studied. Sheets were prepared by quenching molten polymer into cold water. Two-centimeter-gauge-length samples were then drawn in air at 75 or 115°C in an Instron tensile testing machine at a crosshead speed of 10 cm/min. It was found that even at the very low concentration of one side branch per 1000 carbon atoms there was a very marked effect on the strain hardening behavior and the maximum draw ratio that could be achieved. The reduction in draw ratio increased with increasing branch concentration, and long branches were more effective than short branches in limiting the draw ratios achieved. The similarity between these effects and the effects of increasing M?w or radiation crosslinking is noteworthy. This suggests that even a very small concentration of branches can significantly reduces the moleculer motions required for the process of plastic deformation. The Young's modulus/draw ratio relationship follows a pattern virtually identical to that observed in the case of homopolymers.  相似文献   

10.
The resolution attainable in gel-permeation chromatography (GPC) was investigated by using columns packed with polystyrene gel particles of about 5 μ diameter and mixtures of two monodisperse poly-α-methylstyrene samples studied previously. The resolution of GPC was found comparable to that of the sedimentation velocity method and slightly better than that of precipitation chromatography. Standard polystyrene samples obtained from Pressure Chemical Co. also were measured with the same columns. It was found that weight-average to number-average molecular weight ratios (M?w/M?n) of these samples with molecular weight in the range 97,000–411,000 are smaller than 1.006. For samples with molecular weight of 10,000–51,000 and 498,000–860,000, M?w/M?n is larger than 1.006, and the width of molecular weight distributions of these samples differed. In particular, molecular weight distributions of samples with molecular weights 19,800 and 51,000 were shown to be bimodal. It is therefore concluded that GPC is useful for samples of very narrow molecular weight distribution if high-resolution columns are used.  相似文献   

11.
Aromatic poly(amic acids) derived from pyromellitic dianhydride and 4,4′,-diaminodiphenyl ether were characterized by dilute solution techniques. Number-average molecular weights M?n of 13 samples ranged from 13,000 to 55,000 (DP 31–131). Weight-average molecular weights M?w of 21 samples ranged from 9,900 to 266,000. The ratio M?w/M?n was between 2.2 and 4.8. Heterogeneous polymerization yielded higher molecular weight polymer than homogeneous polymerization. The molecular weight could be varied systematically by control of stoichiometric imbalance. Use of very pure monomers and solvent gave polymers of relatively high number-average molecular weight (~50, 000) and the most probable molecular weight distribution M?w/M?n = 2. Impure monomers and/or solvent resulted in lower number-average molecular weight (M?n ? 20,000–30,000) and wider distributions (M?w/M?n = 3–5). The Mark-Houwink relation obtained was [η] = 1.85 × 10?4M?w0.80 The exponent is characteristic of moderately extended solvated coils. The unperturbed chain dimensions (r02 /M)1/2 were 0.848 A., and the steric factor σ was 1.24 which is close to the limiting value of unity for an equivalent chain with free internal rotations. The sedimentation constant–molecular weight relation was S0 = 2.70 × 10?2M?w0.39. This exponent is consistent with the Mark-Houwink exponent.  相似文献   

12.
The investigation of the effect of molecular structural variables on the melt viscosity of polyethylene was extended to the shear dependent region by application of a reduced variables treatment following, in a formal sense, that of Bueche. Viscosity–shear rate data were obtained for a series of experimentally polymerized linear polyethylene samples having a range of molecular weights and molecular weight distributions as characterized primarily by gel permeation chromatography. These data could be superimposed on a single reduced variables flow curve using parameters which were a function only of temperature, limiting Newtonian viscosity, M?w, and M?w/M?n. The same treatment was successfully applied also to branched (low-density) fraction data discussed in a previous paper, with additional correction for long-chain branching. However, different reduced variables curves were obtained for the branched and linear cases.  相似文献   

13.
The zone‐drawing (ZD) method was applied three times to the melt‐spun poly(L ‐lactic acid) (PLLA) fibers of low molecular weight (Mv = 13,100) at different temperatures under various tensions. The mechanical properties and superstructure of the ZD fibers were investigated. The resulting ZD‐3 fiber had a draw ratio of 10.5, birefringence of 37.31 × 10−3, and crystallinity of 37%, while an orientation factor of crystallites remarkably increased to 0.985 by the ZD‐1. The Young's modulus and tensile strength of the ZD‐3 fiber respectively attained 9.1 GPa and 275 MPa, and the dynamic storage modulus was 10.4 GPa at room temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 991–996, 1999  相似文献   

14.
The orientation behavior of high-modulus polyoxymethylene tapes produced by tensile drawing with microwave heating has been investigated over the draw ratio range 10–29. Young's modulus E increases monotonically with draw ratio λ and reaches 55 GPa. The volume fraction of taut tie molecules (TTMs) in the amorphous phase has been estimated by using a Takayanagi model for oriented tapes. The increase in E at draw ratios of less than 10 is mainly due to the increase in crystalline orientation (crystalline orientation function, 0.00 → 0.99). The increase in E at draw ratios of more than 10 is due to the increase both in crystallinity (volume-fraction crystallinity, 0.84 → 0.95) and in TTM (TTM fraction, 0.14 → 0.40). The maximum Young's modulus obtainable by this method of drawing is estimated to be ca. 72 GPa from the relation between 1/E and 1/λ2.  相似文献   

15.
Cationic polymerization of 2-vinyloxyethyl phthalimide ( 1 ) in CH2Cl2 at ?15°C with hydrogen iodide/iodine (HI/I2) as initiator led to living polymers of a narrow molecular weight distribution (M?w/M?n = 1.1–1.25). The number-average molecular weight of the polymers was in direct proportion to monomer conversion and could be controlled in the range of 1000–6000 by regulating the 1 /HI feed ratio. However, when a fresh monomer was supplied to the completely polymerized reaction mixture, the molecular weight of the polymers was not directly proportional to monomer conversion. The polymerization of 1 by boron trifluoride etherate (BF3OEt2) in CH2Cl2 at ?78°C gave polymers with relatively high molecular weight (M?w > 20,000) and broad molecular weight distribution (M?w/M?n ~ 2). The HI/I2-initiated polymerization of 1 was an order of magnitude slower than that of ethyl vinyl ether, probably because of the electron-withdrawing phthalimide pendant. Hydrazinolysis of the imide functions in poly( 1 ) gave a water-soluble poly(vinyl ether) ( 3 ) with aliphatic primary amino pendants.  相似文献   

16.
Several important aspects of the flow in polymer melts through capillaries remain unexplored. This paper examines experimentally one such effect associated with the radial shear-stress gradient in capillaries. During capillary melt flow of a polymer with a wide molecular weight distribution, migration of the large molecules away from the region of highest shear stress, i.e., at the capillary wall, has been predicted but only modestly investigated. This effect has the potential to produce a molecular weight spectrum over the cross section of extruded polymer. Studies of distribution in shear were conducted on a well-characterized wide-distribution polystyrene (M?w = 234,000). An Instron Rheometer equipped with a long capillary (length/diameter ratio of 66.7) was used to perform the extrusion at temperatures of 160–250°C. A solvent coring procedure was used to dissolve away concentric layers of polymer from the extrudate for molecular weight analyses. The method has been shown to cut clean sections without selective extraction. Values of M?w, M?n and M?w/M?n were calculated from complete molecular weight distribution data obtained by calibrated gel permeation chromatography. For a wide range of shear rates and temperatures, no evidence for molecular fractionation was observed. Shear degradation of this polymer was found to be small. However, at high shear rates at 250°C, evidence indicating extensive shear-induced thermal degradation was found. No evidence for oxidative degradation at the extrudate surface was found at either low or high shear rates at this temperature.  相似文献   

17.
Ten unfractionated poly(2,6-diphenyl-1,4-phenylene oxide) samples were examined by gel permeation chromatography (GPC) and intrinsic viscosity [η] at 50°C in benzene, by intrinsic viscosity at 25°C in chloroform, and by light scattering at 30°C in chloroform. The GPC column was calibrated with ten narrow-distribution polystyrenes and styrene monomer to yield a “universal” relation of log ([η]M) versus elution volume. GPC-average molecular weights, defined as M?gpc = \documentclass{article}\pagestyle{empty}\begin{document}$\Sigma w_i [\eta ]_i M_i /\Sigma w_i [\eta ]_i$\end{document}, wi denoting the weight fraction of polymer of molecular weight Mi, were computed from the GPC and [η] data on the polyethers. The M?GPC were then compared with the weight-average M?w from light scattering. The intrinsic viscosity (dl/g) versus molecular weight relations for the unfractionated poly(2,6-diphenyl-1,4-phenylene oxides) determined over the molecular weight range 14,000 ≤ M?w ≤ 1,145,000 are log [η] = ?3.494 + 0.609 log M?w (chloroform, 25°C) and log [η] = ?3.705 + 0.638 log M?w (benzene, 50°C). The M?w(GPC)/M?n(GPC) ratios for the polymers in the molecular weight range 14,000 ≤ M?w ≤ 123,000 approximate 1.5 according to computer integrations of the GPC curves with the use of the “universal” calibration and the measured log [η] versus log M?w relation. The higher molecular weight polymers (326,000 ≤ M?w ≤ 1,145,000) show slightly broadened distributions.  相似文献   

18.
A film of nascent powder of polytetrafluoroethylene (PTFE), compacted below the ambient melting temperature (Tm, 335 °C), was drawn by two‐stage draw techniques consisting of a first‐stage solid‐state coextrusion followed by a second‐stage solid‐state coextrusion or tensile draw. Although the ductility of extrudates was lost for the second‐stage tensile draw at temperatures above 150 °C due to the rapid decrease in strength, as previously reported, the ductility of extrudates increased with temperature even above 150 °C when the second‐stage draw was made by solid‐state coextrusion, reflecting the different deformation flow fields in a free space for the former and in an extrusion die for the latter. Thus, a powder film initially coextruded to a low extrusion draw ratio (EDR) of 6–20 at 325 °C was further drawn by coextrusion to EDRs up to ~?400 at 325–340 °C, near the Tm. Extremely high chain orientation (fc = 0.998 ± 0.001), crystallinity (96.5 ± 0.5)%, and tensile modulus (115 ± 5 GPa at 24 °C, corresponding to 73% of the X‐ray crystal modulus) were achieved at high EDRs. Despite such a morphological perfection and a high modulus, the tensile strength of a superdrawn tape, 0.48 ± 0.03 GPa, was significantly low when compared with those (1.4–2.3 GPa) previously reported by tensile drawing above the Tm. Such a low strength of a superdrawn, high‐modulus PTFE tape was ascribed to the low intermolecular interaction of PTFE and the lack of intercrystalline links along the fiber axis, reflecting the initial chain‐extended morphology of the nascent powder combined with the fairly high chain mobility associated with the crystal/crystal transitions at around room temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3369–3377, 2006  相似文献   

19.
Nylon 46 was synthesized from the salt of 1,4-diaminobutane and adipic acid. High molecular weight polymers could be obtained by reaction for 1 hr at 215°C in a closed system and at least for 1 hr in vacuo at a temperature in the range 290–305°C. The reactions at 290°C were found to have taken place in the solid state and those at 305°C in the melt. The highest molecular weights (M?w ca. 45,000) were obtained by reaction at 290°C with a nylon salt with a pH of 7.8–8.0. The molecular weight characteristics were studied with end-group analysis, viscometry, light scattering, and ultracentrifugation. The polymers were found to be gel-free and monodisperse (M?w/M?n ~ 1.15). Films could be cast from formic acid. From x-ray diffraction patterns, measured on such films, spacings of 3.74 and 4.30 Å were calculated, whereas a long period of 66 Å was also found. The infrared spectra showed all the usual amide bands of even–even polyamides. The melting temperature was found to vary between 283 and 319°C, depending on the thermal history of the sample. Water absorption measured on a cast film showed this to be very hygroscopic (7.5% at 65% RH), while a highly crystalline sample absorbed only little water (1.6% at 65% RH).  相似文献   

20.
The molecular weights (M?n, M?v, and M?w) and molecular weight distributions of polyisobutylenes synthesized by γ-irradiation in the range 29 to ?78°C have been determined. The plots of log M?n, log M?v, and log M?w versus 1/T are linear and parallel (EM? = ?6.36 ± 0.5), and M?w/M?n ≈ 3.0 ± 0.5 over this temperature range. The viscosity-average molecular weights of polyisobutylenes obtained by γ-irradiation were compared with those of polymers prepared by BF3, EtAlCl2, and AlCl3. It is found that, at the same polymerization temperature, the M?v of radiation-induced polyisobutylenes, which propagate by free carbonium ions, is significantly higher than those synthesized by the Lewis acids, which probably propagate via ion pairs. The implications of these findings are discussed, and it is concluded that the counterion in the proximity of the growing cation impedes propagation to a greater extent than it does the competing process of chain transfer to monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号