首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
An experimental study of the tensile properties, tear strength, hysteresis, and swelling ratio of model composite elastomeric compounds consisting of polybutadiene filled with glass beads has been carried out as a function of the size of the beads. The diameter of the beads ranged from 25 to 1000 μm and the volume fractions examined were 0.16, 0.092, and 0.048. Mechanical properties of the filled elastomers were functions of the loading (separation distance), the particle size (surface area/volume), and the elastomer-filler systems studied.  相似文献   

2.
Tear strengths have been measured for a wide variety of molecular networks under threshold conditions; i.e., at high temperatures, low rates of tearing, and with swollen samples. For all of the polymers examined, the threshold tear strength was found to be proportional to the square root of the average molecular weight Mc of network strands, in agreement with theory. However, for the same Mc, and hence for similar values of elastic modulus, different polymers showed major differences in threshold tear strength. The tear strength of polydimethylsiloxane networks was only about one-third that for networks of polybutadiene and cis-polyisoprene, and the values obtained for polyphosphazene networks were only about one-fifth as large, at the same Mc. These striking differences are attributed to differences in network strand length and extensibility for the same molecular weight. The threshold tear strengths are shown to be in satisfactory quantitative agreement with theoretically predicted values on this basis.  相似文献   

3.
Specimens of styrene-butadiene-styrene (SBS) block copolymers, Kraton D-1102, were prepared by solution casting using three different solvents: toluene, cyclohexane, and a mixture of tetrahydrofuran and methyl ethyl ketone (THF/MEK). Measurements of fracture energies of SBS specimens were carried out at various temperatures and rates using two methods (i.e., a conventional tear test and a recently developed cutting test). Effect of casting solvent on the fracture energy was investigated as well. It was found that stick-slip tearing dominates at low temperatures (−50 ∼20°C). Tear strength increased with decreasing temperature. Eventually, a value of 180 kJ/m2 was reached at −70°C, close to the glass transition temperature of polybutadiene phase. At temperatures higher than 20°C, however, steady tearing was found and the tear strength gradually decreased with increasing temperature. Tear strength was virtually zero at 100°C, above the glass transition temperature of polystyrene phase. Effect of temperature on tear strength is more pronounced than that of tearing rate. In contrast, the intrinsic strength of SBS block copolymers determined from cutting test remains unchanged, about 570 J/m2, over a wide range of temperatures and rates. Specimens cast from THF/MEK solution exhibit yielding phenomena when stretched. Moreover, they possess a relatively larger tear strength, compared to those cast from either toluene or cyclohexane solution. A more continuous polystyrene phase is expected to develop in THF/MEK as-cast specimens which is believed to account for the large tear strength. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2003–2015, 1997  相似文献   

4.
A novel aramid paper composite based on pretreated meta-aramid fiber via the addition of cellulose nanofiber (CNF) was fabricated, and the mechanical strength and interfacial strength of the aramid paper composite were investigated. The results indicated that modified fibers showed higher roughness and more available hydrophilic groups. Besides, compared with the pristine aramid paper, it turned out that the tensile index, tear index and interlayer bonding strength of the paper composites with CNF increased by 2.04 times, 2.36 times and 3 times, respectively. In addition, tensile energy absorption (TEA) was also improved by an increment of 99.7% with 20 wt% CNF. These apparent evidences can be accounted for the following mechanisms. On the one hand, enhanced mechanical properties of aramid paper composite were derived from the strong hydrogen bonding or dipole–dipole coupling interaction between aramid fiber and CNF. On the other hand, significant reinforcement of interlayer bonding strength can be attributed to the pivotal bonding bridge and filling agent between aramid chopped fibers (ACFs) and fibrid, which could improve interfacial adhesion of paper sheet. The thin film structure like “spider web” or “silk” from SEM images indicated the CNF was used as a bridge actually.  相似文献   

5.
The strength of adhesion has been determined experimentally for an elastomer layer coupled to a rigid substrate by interfacial chemical bonds of varying surface density. Sites for interfacial bonding were obtained by treating glass plates with mixtures of vinyl-and ethylsilanes in varying proportions. A layer of polybutadiene was then applied and cross-linked in situ by a free-radical process. Formation of interfacial bonds to vinyl groups (when present) on the glass substrate is inferred from the proportional increase in strength of adhesion under near-equilibrium conditions, i.e., at low rates of detachment and at high temperatures. A 35-fold increase in strength was found for vinylsilane, relative to ethylsilane, in rough agreement with the relative magnitudes of the strengths of covalent and dispersion bonds. However, the absolute magnitudes were much greater than predicted, by a factor of about 25 in both cases. This is attributed to the polymeric character of the elastomer: many molecular bonds must be stressed in order to detach or rupture one.4 In agreement with this hypothesis, the strength of adhesion decreased with increasing crosslinking. Anomalously high adhesion was found with clean glass. It presumably reflects a specific bonding mechanism of unknown type.  相似文献   

6.
Two partially gelled (crosslinked) layers of elastomer were pressed into intimate contact and the gelation reaction was then taken to completion. By varying the extent of initial gelation, the degree of chemical interlinking was varied from zero, when two fully reacted sheets were pressed together, up to a level characteristic of the final density of molecular linking within each layer, when they were brought together before any reaction had occurred. The strength of adhesion between the layers was measured under threshold conditions, i.e., at low rates of peel, at high temperatures, and, in some instances, with the layers swollen with a compatible liquid. Linear relations were obtained between the threshold work of detachment per unit of interfacial area and the amount of chemical interlinking, deduced from the kinetics of molecular linking within each layer. At any degree of interlinking, ranging from zero to the fully interlinked state, the work of detachment was lower for networks composed of shorter molecular chains, in accordance with the Lake–Thomas theory for the threshold strength of elastomer networks. By extrapolation to the fully interlinked state, the strength of adhesion corresponding to cohesive rupture was inferred. These values agreed with measured tear strength for polybutadiene gelled by a free-radical process. For a sulfur crosslinking system, and for both free-radical and sulfur crosslinking of poly(ethylene-co-propylene), the threshold tear strength of the elastomer was found to be much higher than the extrapolated value from adhesion measurements. This discrepancy is ascribed to roughness of the tear plane in relatively strong elastomers, in contrast to the smooth separation of flat adhering layers. Adhesion of fully crosslinked sheets was generally low, 1–2 J/m2. Higher values, 5–25 J/m2, were found with sulfur crosslinking systems, especially those yielding a high proportion of polysulfidic crosslinks. Interlinking via polysulfide crosslink interchange reactions is suggested in these cases.  相似文献   

7.
The conductivity of styrene‐butadiene‐styrene block copolymers containing different amounts of extraconductive carbon black (CB) was investigated as a function of the mold temperature. The composites exhibited reduced percolation thresholds (between 1.0 and 2.0 vol % CB). The dynamic mechanical analysis characterization revealed that the glass‐rubber‐transition temperatures of both segments were not affected by the CB addition, although the damping of the polybutadiene phase displayed a progressive drop with an increase in the CB concentration. The normalized curves of tan δ/tan δmax (where tan δ represents the value of the loss tangent at any measurement temperature and tan δmax represents the loss tangent peak value at the corresponding temperature Tmax) versus T/Tmax (where T is the temperature and Tmax is the maximum temperature), corresponding to both polystyrene and polybutadiene phases as well as the activation energy related to the glass‐rubber‐transition process, did not present any significant change with the addition of CB. The dielectric analysis revealed the presence of two relaxation peaks in the composite containing 1.5 vol % CB, the magnitude of which was strongly influenced by the frequency, being attributed to interfacial Maxwell‐Wagner‐Sillars relaxations caused by the presence of different interfaces in the composite. The mechanical properties were not affected by the presence of CB at concentrations of up to 2.5 vol %. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2983–2997, 2003  相似文献   

8.
A new example of a positive effect of interfacial chemical bonding on the strength of adhesive bonds is reported. The chemical bond was formed between a p-bromomethylphenylpolysiloxane-coated glass slide and a liquid dicarboxy-terminated polybutadiene that was subsequently bonded to an elastomeric polybutadiene by crosslinking with dicumylperoxide. Peel tests at 180° led to cohesive failure in the elastomer layer for two different proportions of p-bromomethylphenyl groups on the glass slides, whereas uncoated slides and slides coated with an inert polysiloxane layer, p-tolyl-polysiloxane, showed interfacial failure. Further confirmation of interfacial bonding was obtained from SEM studies. When peel tests resulted in cohesive failure, it was found possible to distinguish between different degrees of interfacial by the different times required for failure at the interface on swelling the elastomer layer with pentane.  相似文献   

9.
《先进技术聚合物》2018,29(2):934-940
A novel heat‐curable silicone rubber (MCSR/Si‐PAMAM) was prepared by using siloxane polyamidoamine (Si‐PAMAM) dendrimers as cross‐linkers and polysiloxane containing γ‐chloropropyl groups as gums. The chemical cross‐linking occurs through the reaction between Si‐PAMAM dendrimers and polysiloxane containing γ‐chloropropyl groups. The effect of various amounts of cross‐linkers on mechanical properties of MCSR/Si‐PAMAM was discussed in this paper. MCSR/Si‐PAMAM exhibits favorable mechanical properties with a tensile strength of 10.06 MPa and a tear strength of 47.9 kN/m when the molar ratio r of [N‐H]/[CH2CH2CH2Cl] is 1:1. These excellent mechanical properties can be attributed to the formation of concentrative cross‐linking from Si‐PAMAM dendrimers in the cross‐linking networks, along with the introduction of Si–O–Si units in the internal structure of dendrimers. The introduction of Si–O–Si units reduces the steric hindrance of molecular structure, which facilitates the N–H bonds in the interior layers of dendrimers to react with γ‐chloropropyl groups. In addition, thermogravimetric analysis results indicate that MCSR/Si‐PAMAM is thermally stable even at high temperatures in a nitrogen atmosphere. Differential scanning calorimetry analysis reveals that the glass transition peak of MCSR/Si‐PAMAM is not identified in the temperature range −150 to −30°C, only a melting endothermic peak at −40°C.  相似文献   

10.
廖双泉 《高分子科学》2015,33(7):1058-1068
An effective procedure has been developed to synthesize the functionalized graphene oxide grafted by maleic anhydride grafted liquid polybutadiene(MLPB-GO). Fourier transform spectroscopy and X-ray photoelectron spectroscopy indicate the successful functionalization of GO. The NR/MLPB-GO composites were then prepared by the co-coagulation process. The results show that the mechanical properties of NR/MLPB-GO composites are obviously superior to those of NR/GO composites and neat NR. Compared with neat NR, the tensile strength, modulus at 300% strain and tear strength of NR composite containing 2.12 phr MLPB-GO are significantly increased by 40.5%, 109.1% and 85.0%, respectively. Dynamic mechanical analysis results show that 84% increase in storage modulus and 2.9 K enhancement in the glass transition temperature of the composite have been achieved with the incorporation of 2.12 phr MLPB-GO into NR. The good dispersion of GO and the strong interface interaction in the composites are responsible for the unprecedented reinforcing efficiency of MLPB-GO towards NR.  相似文献   

11.
Hyperbranched poly(ester‐silane)s (HPE‐Si, including HPE‐Si4 and HPE‐Si8) were synthesized for glass bead filled epoxy resins. The grafting reaction and the degree of grafting of HPE‐Si onto the surface of glass beads were characterized by Fourier transform infrared photoacoustic spectroscopy (FT‐IR‐PAS) and thermogravimetric analysis (TGA) measurements. The degree of grafting was calculated to be in the range 1.0–4.2% for different HPE‐Si treatments. The tensile strength and modulus of glass bead filled epoxy resins were found to increase with increasing filler content. Moreover, HPE‐Si4 series have the highest tensile strength and modulus at the same glass bead size and volume fraction in the composites compared with HPE‐Si8 series. The fracture toughness (K1c) of specimens with different glass bead sizes (4.8 and 2.0 μm) has the same trend that changes with the filler content and the modification of the surface of glass beads. The investigation of the toughening mechanism using Irwin's model through the yield stress measurements suggest that the toughening mechanism for small glass bead filled resins does not involve matrix plasticity, whereas the toughening mechanism involving matrix shear banding for large glass bead filled resins with higher filler content (up to 10 wt%) was proposed. The morphology of the filled resins studied by scanning electron microscopy (SEM) showed that the interface compatibility between the glass beads and epoxy matrix was greatly improved by the treatment with HPE‐Si. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
双酚A型环氧改性R-122环氧树脂的研究   总被引:1,自引:0,他引:1  
用双酚A环氧树脂(E-44)改性脂环类环氧树脂(R-122),通过对改性R-122环氧树脂力学性能和热性能的测定,探讨了固化工艺,固化荆体系对改性R-122环氧树脂韧性的影响。结果表明:改性R-122环氧树脂冲击强度提高40%,弯曲强度提高75%,断裂能提高81%,而热变形温度和玻璃化转变温度基本不变。R-122树脂基复合材料随E-44的加入冲击强度和弯曲强度分别提高12%和18%。  相似文献   

13.
Thermoplastic polycarbonate (PC) and nylon 6 (NY) composites with cenosphere and hollow glass beads were prepared and their mechanical, rheological, thermal and flame retardency properties were studied. The flexural behavior of the composites increased after loading with cenosphere and hollow glass beads. The tensile strength of the PC composites was enhanced up to 80 N mm–2 as compared to pure PC while no remarkable change was observed in case of nylon 6 composites. Study of thermogravimetric Analysis (TGA) showed that the thermal stability of all the composites (Polycarbonate/cenosphere, Polycarbonate/hollow glass beads, Nylon 6/cenosphere and Nylon 6/hollow glass beads) increased. It was concluded that both the fillers enhanced the non-flammability of the polymers. Limiting oxygen index (LOI) value of all the composites showed an increase with increase in the concentration of filler. The optimal results of LOI and UL 94 were observed in composites with 8% cenosphere and 12 % cenosphere in case of Nylon 6. Cenosphere led to superior mechanical properties of polycarbonate and nylon 6 in comparison to hollow glass beads which suggested the composites can find use in automotive, industrial, pump component and for manufacturing of light weight parts in aeronautic industry at lower economic value.  相似文献   

14.
The present article describes the synthesis and characterization of bi-component polymer systems based on gelatin films incorporated with 2-hydroxyethyl methacrylate (HEMA) monomer, developed for medical application. Gelatin films were prepared by the addition of HEMA of different concentrations (0–30 wt.%) and irradiated with various radiation doses (0–5 kGy). Tensile strength and tear strength of the irradiated gelatin films were found to increase with increasing HEMA up to 20 wt.% as well as radiation doses (1 kGy) as optimized. The maximum tensile and tear strengths of irradiated gelatin films with HEMA were found to be 79.1 MPa and 83.2 N/mm, respectively, at the optimum conditions, and these values were about double that of a reference film prepared without additives. In addition, morphological analysis was done by scanning electron microscopy (SEM) and showed how HEMA cemented and was covered with gelatin in the blend. Thermomechanical analysis was carried out to investigate the shifting of glass transition temperature (Tg) towards higher temperature due to HEMA addition, and the effect of this film was tested on the human body in order to determine whether it can be applied for medical purposes.  相似文献   

15.
The rates of epoxidation of polybutadiene homopolymers and styrene–butadiene triblock copolymers with monoperoxyphthalic acid were measured at four temperatures in homogeneous solution. Dioxane and mixed solvents with chloroform were used as reaction media. Activation energy values were also calculated for polymers different in microstructure and styrene content. Viscometry in a modified viscometer was performed and combined with kinetic measurement to monitor the conformational change during epoxidation. Cis-content in polybutadiene and styrene content in SBS exhibit only slight effect on epoxidation in dioxane. The addition of chloroform promotes the reaction rate remarkably and enlarges the difference between polymers. Explanations were given including the solvent effect on reduced viscosity, which was used to correlate the conformational change of polymer chains. NMR and GPC analysis confirmed the absence of ring opening and degradation during epoxidation up to 54% epoxy group content.  相似文献   

16.
The movement of water originated by the spreading of two surfactants was analyzed in glass beads as well as on soil systems, both of particles of nonuniform size

The higher difference of surface tension produced in the system by 1 -hexadecanol compared to that of 1-tetradecanol led therefore to a higher amount of water moved. Decreased proportion of the smaller sized particles in glass beads system produced a decrease in the total water moved by both surfactants.

Organic matter acted in soil as a second surfactant in glass beads. This effect was compared in glass beads systems once 1-hexadecanol was evenly distributed among the particles as continuous film, which played a role alike that of organic matter in soil and then a second surfactant 1-tetradecanol was added. These additional surfactant effect diminished the difference between initial and final surface tension (surface tension depression) of the system and so the total water moved.

The soil organic matter (1.7%) modified the water movement curve in the presence of low (0.2g) content of 1-hexadecanol, whereas for high content of either alcohol (0.4g) or low content of 1-tetradecanol content (0.2g) the water movement curves were the same  相似文献   

17.
Crosslinked samples of cis‐1,4‐polybutadiene (BR) were crystallized at low temperatures and then slowly melted. From volume changes and differential scanning calorimetry measurements, the degree of crystallization in the unstrained state was estimated to be about 20%, much lower than for natural rubber (NR). Crystallization and melting were followed in stretched samples by corresponding changes in tensile stress. Crystallization was faster at higher strains, and the melting temperature was raised significantly on stretching but less than for NR, and the decrease in stress on crystallizing was smaller. Measurements of tensile strength were made over a wide temperature range and showed a marked drop with heating to temperatures of 40–60 °C, falling to values of only 1–2 MPa. A similar drop in strength occurred in NR vulcanizates at high temperatures and was attributed to failure to crystallize on stretching (A. G. Thomas & J. M. Whittle, Rubber Chem Technol 1970, 43, 222; A. N. Gent, S. Kawahara & J. Zhao, Rubber Chem Technol 1998, 71, 668). At ambient temperatures, where strain‐induced crystallization occurred, the strength of BR samples was only about one‐half of that of similar NR materials. This was attributed to less strain‐induced crystallinity in BR (verified by X‐ray studies), paralleling the lower amount developed at low temperatures. We speculate that the higher density of molecular entanglements in BR than in NR prevents BR from crystallizing to the same degree as NR. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 811–817, 2001  相似文献   

18.
Notch Izod impact strength of poly(propylene) (PP)/glass bead blends was studied as a function of temperature. The results indicated that the toughness for various blends could undergo a brittle‐ductile transition (BDT) with increasing temperature. The BDT temperature (TBD) decreased with increasing glass bead content. Introducing the interparticle distance (ID) concept into the study, it was found that the critical interparticle distance (IDc) reduced with increasing test temperature correspondingly. The static tensile tests showed that the Young's modulus of the blends decreased slightly first and thereafter increased with increasing glass bead content. However, the yield stress decreased considerably with the increase in glass bead content. Dynamic mechanical analysis (DMA) measurements revealed that the heat‐deflection temperature of the PP could be much improved by the incorporation of glass beads. Moreover, the glass transition temperature (Tg) increased obviously with increasing glass beads content. Differential scanning calorimetry (DSC) results implied that the addition of glass beads could change the crystallinity as well as the melting temperature of the PP slightly. Thermogravimetric analysis (TGA) measurements implied that the decomposition temperature of the blend could be much improved by the incorporation of glass beads. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Rubber composites with very high moduli at low elongation, high elongation at break and high ultimate breaking strength have been developed. The matrix was acrylonitrile butadiene rubber (NBR) and the hybrid (fibrous and particulate) reinforcements were short, fine pineapple leaf fiber (PALF) and carbon black. The amount of PALF was fixed at 10 parts (by weight) per hundred of rubber (phr) while that of carbon black was varied from 0 to 30 phr. Uniaxial NBR composites were prepared. Tensile strength, elongation at break, modulus and tear strength of the hybrid composites were characterized in both longitudinal (parallel to the fiber axis) and transverse (perpendicular to the fiber axis) directions. The addition of carbon black causes the slope of the early part of the stress–strain curve to increase and also extends breaking to greater strains. At carbon black contents of 20 phr and above, the stress–strain relation displays an upturn at high elongations, providing greater ultimate strength. Comparison with the usual carbon black filled rubber shows that the composite behavior at low strains is determined by the PALF, and at high strains by the carbon black. This high performance PALF-carbon black reinforced NBR shows great promise for engineering applications.  相似文献   

20.
《Polymer Testing》1987,7(3):153-163
A method is described here for testing of rubber to rubber joints. This involves the modification of the 180° peel test by using a perforated plastic sheet at the interface. Filled and unfilled natural rubber to natural rubber, polybutadiene to polybutadiene, and natural rubber to polybutadiene joints have been tested using the method. It has been observed that the method is very useful for testing of all rubber to rubber joints, especially for filled rubber to filled rubber and unfilled natural rubber to natural rubber joints which could not be otherwise tested. The test results are reproducible and the variations in the peak forces are reduced. The joints with or without a perforated sheet inside give similar values of work of adhesion when a correction is introduced for width in the case of the former. The energy criteria for rupture do not change with the introduction of the perforated sheet. The sharp plastic sheet prevents tear deviation from the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号