共查询到20条相似文献,搜索用时 15 毫秒
1.
Manuel C. Schaloske Hansjürgen Mattausch Lorenz Kienle Arndt Simon Prof. Dr. Dr. h. c. 《无机化学与普通化学杂志》2008,634(9):1493-1500
Pr6C2‐Bitetrahedra in Pr6C2Cl10 and Pr6C2Cl5Br5 The compounds Pr6C2Cl10 and Pr6C2Cl5Br5 are prepared by heating stoichiometric mixtures of Pr, PrCl3, PrBr3 and C in sealed Ta capsules at 810 ? 820 °C. They form bulky transparent yellow to green and moisture sensitive crystals which have different structures: space groups C2/c, (a = 13.687(3) Å, b = 8.638(2) Å, c = 15.690(3) Å, β = 97.67(3)° for Pr6C2Cl10 and a = 13.689(1) Å, b = 10.383(1) Å, c = 14.089(1) Å, β = 106.49(1)° for Pr6C2Cl5Br5). Both crystal structures contain C‐centered Pr6C2 bitetrahedra, linked via halogen atoms above edges and corners in different ways. The site selective occupation of the halogen positions in Pr6C2Cl5Br5 is refined in a split model and analysed with the bond length‐bond strength formalism. The compound is further characterized via TEM investigations and magnetic measurements (μeff = 3.66 μB). 相似文献
2.
3.
Sarvesh Kumar Jos Romero Michael Probst Thana Maihom Gustavo García Paulo Limo-Vieira 《Molecules (Basel, Switzerland)》2022,27(15)
The geometrical effect of chlorine atom positions in polyatomic molecules after capturing a low-energy electron is shown to be a prevalent mechanism yielding Cl2−. In this work, we investigated hexachlorobenzene reduction in electron transfer experiments to determine the role of chlorine atom positions around the aromatic ring, and compared our results with those using ortho-, meta- and para-dichlorobenzene molecules. This was achieved by combining gas-phase experiments to determine the reaction threshold by means of mass spectrometry together with quantum chemical calculations. We also observed that Cl2− formation can only occur in 1,2-C6H4Cl2, where the two closest C–Cl bonds are cleaved while the chlorine atoms are brought together within the ring framework due to excess energy dissipation. These results show that a strong coupling between electronic and C–Cl bending motion is responsible for a positional isomeric effect, where molecular recognition is a determining factor in chlorine anion formation. 相似文献
4.
Molecular and fragment negative ions are produced from the collisions between rubidium atoms and several kinds of halogenated unsaturated organic molecules in crossed supersonic beams. Their apparent electron affinities and the bond dissociation energies are measured. 相似文献
5.
6.
A detailed radical reaction mechanism is proposed to describe the thermal reactions of CCl4 and C2Cl6 in the gas phase quantitatively. A consistent set of activation energies and preexponential factors for all elementary reactions, in combination with enthalpies of formation and entropies for all species involved, is computer optimized to fit experimental pressure-rise curves and concentration profiles. For this purpose new experimental results on the pyrolysis of CCl4 are used, together with published kinetic data on the pyrolysis of C2Cl6 (in the absence and in the presence of Cl2). © 1996 John Wiley & Sons, Inc. 相似文献
7.
The absolute rate constants have been measured for several gas-phase chlorine atom-molecule reactions at 25°C by resonance fluorescence. These reactions and their corresponding rate constants in units of cm3 mole?1 sec?1 are: The effects of varying the substrate pressure, total pressure, light intensity and chlorine-atom source on the value of the bimolecular rate constants have been investigated for all these reactions. Conditions under which no competing side reaction occurs were established and the reported rate constants were measured under these conditions. For reactions (2), (5), (6), (7), and 8, there is a discrepancy of a factor of two between the rate constants measured in this work and values in the literature; it is suggested that this is due to an error in the previously measured value of k/k upon which the relative measurements in the literature ultimately depend. 相似文献
8.
An analysis of the thermochemistry of the kinetic parameters of the elementary reactions involved in the pyrolysis of pentachloroethane has resolved several disputed, unclarified, or inconsistent aspects of the reaction mechanism. The resulting mechanisms for the inhibited and uninhibited pyrolysis account for all reported experimental findings. On the basis of this interpretation, first experimentally based values have been derived for the following: DH0(CCl3–CHCl2) = 79.0 ± 1.0 kcal/mol, ΔH(CHCl2) = 25.7 ± 1.0 kcal/mol, and E1 = 59.7 ± 1.0 kcal/mol C2HCl5 . 相似文献
9.
10.
Preparation of trans-[Mo6Cl8]Cl4Br22? Starting from Crystalline [Mo6Cl8]Cl4(H2O)2 and Crystal Structure of [(C6H5)4As]2[Mo6Cl8]Cl4Br2 The synthesis of the title compound is successful if the crystallized [(Mo6Cl8)Cl4(H2O)2] containing the H2O molecules in trans-position reacts with HBr + [(C6H5)4As]Br in ethanol in a heterogeneous reaction. The X-ray structure investigation confirms the existence of discrete trans-Br-substituted cluster anions of composition [(Mo6Cl8)Cl4Br2]2? in the crystal. The reaction in homogeneous solutions proceeds to Br-enriched compounds. [(C6H5)4As]2[(Mo6Cl8)Cl4Br2] crystallizes in the triclinic space group P¯1 with a = 11.071(2), b = 11.418(2), c = 12.813(2) Å, α = 116.10(2), β = 95.27(2) and γ = 94.41(2)° (?133°C). The crystal structure at ?133°C was determined from single crystal X-ray diffraction data (R1 = 0.026). The [(Mo6Cl8)Cl4Br2]2?-anions are not completely ordered but distributed statistically among the three positions which are possible within the limits of the ordered [Mo6Cl8]-cores (ratio 11:5:4). The frameworks of the anions consist of Mo6 cluster units with (slightly distorted) octahedral arrangement of the metal atoms (d(Mo? Mo): 2.600(1) up to 2.614(1) Å), which are coordinated by the halogeno ligands in a square-pyramidal manner. The details of the structure will be discussed and compared with similar [(Mo6X8)Y4] cluster units (X, Y ? Cl, Br). 相似文献
11.
12.
13.
14.
R. G. Gasanov O. G. Kalina A. A. Popov P. A. Dorozhko B. L. Tumanskii 《Russian Chemical Bulletin》2000,49(4):753-754
The photolysis of C60Cl6 in the presence of α-phenyl-N-tert-butylnitron (PBN) as a spin trap was studied by ESR spectroscopy. It was shown that a C−Cl bond undergoes homolytic cleavage
to give a stable fullerenyl radical of the cyclopentadienyl type, whose formation was confirmed by quantum-chemical computations.
Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 752–754, April, 2000. 相似文献
15.
NaEu2Cl6 and Na0.75Eu2Cl6: Mixed Valent Chlorides of Europium with Sodium The reaction of Na2EuCl5 with Eu metal in sealed gold tubes yields blue single crystals of NaEu2Cl6. It crystallizes with the hexagonal crystal system (space group P63/m) with a = 755.74(8) pm, c = 429.81(5) pm, Z = 1; the structure is closely related to the UCl3-type. Green single crystals of Na0.75Eu2Cl6 were first obtained as a by-product in the synthesis of Na2EuCl5 in evacuated silica tubes and may be prepared by reduction of EuCl3 with sodium. Na0.75Eu2Cl6 crystallizes isotypic to NaEu2Cl6 with a = 753.69(11) pm and c = 416.3(2) pm. 相似文献
16.
Harald Schfer 《无机化学与普通化学杂志》1981,479(8):105-112
Formation of Gaseous MCl2 Complexes. Comparative Study on the Suitability of Al2Cl6, Ga2Cl6, In2Cl6, Fe2Cl6, SiCl4, TiCl4, PCl5, TaCl5, and U2Cl10 as Complex Former The thermodynamic data for reactions of the type MCl2,s + L2Cl6,g = ML2Cl8,g are – as expected – nearly independent on L(Al, Ga, In, Fe). Transport rates e. g. of CoCl2 something smaller with L ? Ga may be traced back on uncertainties concerning the Ga2Cl6 dissociation, and with L ? Fe they may be traced back on the incorporation of FeCl2 into MCl2,s. SiCl4 and TiCl4 cause no noticable transport of CoCl2 or CuCl2 in a temperature gradient, which leads to a short bond consideration. PCl5 and TaCl5 cause the transport of small amounts of CoCl2. U2Cl10/UCl5 are able to transport a remarkable amount of CaCl2 and CoCl2, respectively. 相似文献
17.
18.
19.
Solignac G Mellouki A Le Bras G Barnes I Benter T 《The journal of physical chemistry. A》2006,110(13):4450-4457
The Cl atom initiated oxidation of C(6)F(13)CH(2)OH, C(6)F(13)CHO, and C(3)F(7)CHO was investigated at 298 K and 1000 mbar pressure of air in a photoreactor using in situ Fourier transform infrared (FTIR) analysis. The rate coefficient for the reaction Cl + C(6)F(13)CH(2)OH (reaction 2) was measured using a relative method: k(2) = (6.5 +/- 0.8) x 10(-13) cm(3) molecule(-1) s(-1). C(6)F(13)CHO was detected as the major primary product, while CO and CF(2)O were found to be the major secondary products. A fitting procedure applied to the concentration-time profiles of C(6)F(13)CHO provided a production yield of (1.0 +/- 0.2) for this aldehyde in reaction 2, and the rate coefficient for the reaction Cl + C(6)F(13)CHO (reaction 4) was k(4) = (2.8 +/- 0.7) x 10(-12) cm(3) molecule(-1) s(-1). A high CO yield observed in the oxidation of C(6)F(13)CH(2)OH, (52 +/- 1)%, is attributed to the Cl atom initiated oxidation of C(6)F(13)CHO. High CO yields, (61 +/- 2)% and (85 +/- 5)%, were also measured in the Cl atom initiated oxidation of C(3)F(7)CHO in air and nitrogen, respectively. These high CO yields suggest the occurrence of a decomposition reaction of the perfluoroacyl, C(6)F(13)CO, and C(3)F(7)CO radicals to form CO which will compete with the combination reaction of these radicals with oxygen to form perfluoroacyl peroxy radicals in the presence of air. The latter radicals C(n)F(2)(n)(+1)CO(O)(2) (n = 6-12), through their reaction with HO(2) radicals, are currently considered as a possible source of persistent perfluorocarboxylic acids which have been detected in the environment. The consequences of the present results would be a reduction of the strength of this potential source of carboxylic acids in the atmosphere. 相似文献
20.
DFT studies (B3LYP/6-31G) on mono- and dichloro derivatives of benzene, naphthalene, B12H12(2-), four-atom-sharing condensed systems B20H16, and monocarborane isomers of B20H16 are used to compare the variation of relative stability and aromaticity between condensed aromatics. The trends in the variation of the relative energies and aromaticity in these two- and three-dimensional systems are similar. Aromaticity, estimated by NICS values, does not change considerably with condensation or substitution. The minor variation in the relative energies of the isomers of chloro derivatives is explained by the topological charge stabilization rule of Gimarc. The compatibility of the cap and ring orbitals decides the relative stability of CB19H16+. 相似文献