首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On Polygermanes. VII. Crystal Structure of Dodecaphenylcyclohexagermane Ditoluene The crystal structure of the title compound ( 1 d ) has been determined, refined to a R of 0.071, and compared with the structure of Ge6Ph12 · 7 benzene ( 1 c ). The molecular structure of Ge6Ph12 ( 1 ) is a Ge6-chair with 6 axial and equatorial phenyl substituents respectively. The two toluene molecules in 1 d sandwich 1 above and below the plane of the six-membered ring resulting in steeper axial phenyl groups, stronger rippling of the Ge6-chair and stretched Ge–Ge distances (246.3 pm) compared to 1 c . 1 has Ci-symmetry in both structures with nearly identical torsion of the phenyl groups. The Ge6(Pheq)6-part of the molecule approximates C2h-symmetry. The arrangement of any two phenyl groups realizes largely either a parallel or a perpendicular setting of their respective planes. The joint conformation found is a normal conformation for molecules of the type X6Ph12.  相似文献   

2.
On Polygermanes. I. Modifications of Hexaphenyldigermane Hexaphenyldigermane ( 1 ) can be obtained from solutions in chlorinated hydrocarbons both in a triclinic modification ( 1 a ) stable below 418 K and in a metastable hexagonal modification ( 1 b ); heat of conversion at 418 K 8,4 kJ/mole. From benzene 1 crystallizes in a rhombohedral modification ( 1 c ) containing two moles of crystal benzene. The complete vibrational spectra of 1 a and 1 b are given and assigned (νGe-Ge = 220–250 cm?1). The three modifications are characterized by their crystal data. The crystal structure of 1 a has been determined and refined to a R of 0.037. 1 forms an achiral bipropeller (Ge? Ge distance 243.7 (2) pm). The crystal structure can be described as rotational ellipsoids of 1 arranged in a body centred packing.  相似文献   

3.
Ruthenium(II) Phthalocyaninates(2–): Synthesis and Properties of (Acido)(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) (nBu4N)[Ru(OH)2Pc2?] is reduced in acetone with carbonmonoxid to blue-violet [Ru(H2O)(CO)Pc2?], which yields in tetrahydrofurane with excess (nBu4N)X acido(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) isolated as red-violet, diamagnetic (nBu4N) complex salt. The UV-Vis spectra are dominated by the typical π-π* transitions of the Pc2? ligand at approximately 15100 (B), 28300 (Q1) und 33500 cm?1 (Q2), only fairly dependent of the axial ligands. v(C? O) is observed at 1927 (X = I), 1930 (Cl, Br), 1936 (N3, NCO) 1948 cm?1 (NCS), v(C? N) at 2208 cm?1 (NCO), 2093 cm?1 (NCS) and v(N? N) at 2030 cm?1 only in the MIR spectrum. v(Ru? C) coincides in the FIR spectrum with a deformation vibration of the Pc ligand, but is detected in the resonance Raman(RR) spectrum at 516 (X = Cl), 512 (Br), 510 (N3), 504 (I), 499 (NCO), 498 cm?1 (NCS). v(Ru? X) is observed in the FIR spectrum at 257 (X = Cl), 191 (Br), 166 (I), 349 (N3), 336 (NCO) and 224 cm?1 (NCS). Only v(Ru? I) is RR-enhanced.  相似文献   

4.
The metal ion distribution on the two metal sites of monoclinic Mn1?xCux(HCOO)2 · 2(H,D)2O mixed crystals are studied by infrared and Raman spectroscopic methods. The spectral regions 3 200–3 400 cm?1 (vOH), 2 875–2 990 cm?1 (vCH), 2 330–2 500 cm?1 (vOD of matrix isolated HDO molecules), 1 350–1 400 cm?1 (symmetric CO2 stretching modes), 570–950 cm?1 (H2O librations), and 490 cm?1 (M? O lattice modes) are mostly sensitive to the metal ions present. The frequency shifts of these bands with increasing content of copper show that Cu2+ prefers the M(1) site, coordinated by HCOO? only. The strengths of the hydrogen bonds increase on going from manganese to copper formate, due to the increased synergetic effect of Cu2+. Solubility and X-ray data of the mixed crystals are included. Irrespective of the same crystal structure, two series of mixed crystals are formed: eutonic area at 0.65 ≥ x ≥ 0.5.  相似文献   

5.
Amorphous non‐hydrogenated germanium carbide (a‐Ge1?xCx) films have been deposited using magnetron co‐sputtering technique by varying the sputtering power of germanium target (PGe). The effects of PGe on composition and structure of the a‐Ge1?xCx films have been analyzed. The FTIR spectrum shows that the C–Ge bonds were formed in the a‐Ge1?xCx films according to the absorption peak at ~610 cm?1. The Raman results indicate that the amorphous films also contain both Ge and C clusters. The XPS results reveal that the carbon concentration decreased as PGe increased from 40 to 160 W. The fraction of sp3 C–C bonds remains almost constant when increasing PGe from 40 to 160 W. The sp2 C–C content of a‐Ge1?xCx film decreases gradually to 35.9% with PGe up to 160 W. Nevertheless, sp3 C–Ge sites rose with increasing PGe. Furthermore, the hardness and the refractive index gradually increased with increasing PGe. The excellent optical transmission of annealed a‐Ge1–xCx double‐layer coating at 400 °C suggests that a‐Ge1?xCx films can be used as an effective anti‐reflection coating for the ZnS IR window in the wavelength region of 8–12 µm, and can endure higher temperature than hydrogenated amorphous germanium carbide do. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Ruthenium(II)-Phthalocyaninates(1–): Synthesis and Properties of (Halo)(carbonyl)phthalocyaninato(1–)ruthenium(II) Brown-violet (halo)(carbonyl)phthalocyaninato(1–)ruthenium(II), [Ru(X)(CO)Pc?] (X = Cl, Br) is prepared by oxidation of [Ru(X)(CO)Pc2?]? with the corresponding halogen or dibenzoylperoxide. The eff. magnetic moment μeff = 1.74 (X = Cl), 1.68 μB (Br) confirms the presence of a low-spin RuII complex of the Pc? radical. Accordingly, only the first ring oxidation at ~0.64 V and the first ring reduction at ~ ?1.19 V is observed in the cyclovoltammogram of [Ru(X)(CO)Pc2?]?. The UV-VIS-NIR spectra characterizing a monomeric Pc? radical with intense π-π* transitions at 14500, 19800, 25100 and 33900 cm?1 are compared with those of [Ru(Cl)2Pc?] and of monomeric as well as dimeric [Zn(Cl)Pc?]. The IR and resonance Raman(RR) spectra are characteristic for a Pc? radical, too. Diagnostic in-plane vibrations of the Pc? ligand are in the IR spectrum at 1071, 1359, 1445 cm?1 and in the RR spectrum (λ0 = 488.0 nm) at 567, 1597 cm?1. v(C? O) at 1950 cm?1 and v(Ru? X) at 260 (X = Cl) resp. 184 cm?1 (X = Br) are observed only in the IR spectrum.  相似文献   

7.
Oxophthalocyaninato(2–)molybdenum(IV), activated by bromine oxidation prior to use, reacts with fused triphenylphosphine in the presence of bis(triphenylphosphine)iminium bromide to yield linear-bis(triphenylphosphine)iminium trans-dibromophthalocyaninato(2–)molybdate(III), l(PNP)trans[Mo(Br)2pc2?]. It crystallizes triclinic with crystal data: a = 10.506(1) Å, b = 12.436(2) Å, c = 12.918(2) Å, α = 76.186(1)°, β = 67.890(1)°, γ = 68.689(1)°; space group P1 (No. 2); Z = 1. MoIII is in a pseudo-octahedral coordination geometry with the bromo ligands in trans-arrangement. The Mo? Np and Mo? Br distance is 2.043(10) and 2.588(1) Å, respectively. The PNP cation adopts a linear conformation. In the IR spectrum vas(Mo? Br) is observed at 218 cm?1 and vas(P? N) of the linear (P? N? P) core at 1406 cm?1. Cyclic and differential-pulse voltammetry show two quasi-reversible cathodic processes at ?1.15 and ?0.53 V vs. Ag/AgCl. The first is assigned to a phthalocyaninate directed reduction (pc2?/pc3?), while the latter arises from a Mo directed reduction (MoIII/MoII). Spectral monitoring confirms the reversible MoIII/MoII reduction. Two quasi-reversible anodic processes at 0.60 and 1.27 V are assigned to the successive Mo directed oxidation with redox couples MoIII/MoIV and MoIV/MoV. For the first time, three very intense spin-allowed trip-quartet transitions are observed in the electronic absorption spectra at 7140 (TQI), 16890 (TQ2) and 18700 cm?1 (TQ3) together with a sing-quartet transition at 15850 cm?1 and characteristic ?Q”? region with maximum at 28500 cm?1 and ?N”? region at 37400 cm?1. All electronic excitations are of comparable intensity. A prominent low temperature emission at 6690 cm?1 is assigned to a spin-forbidden trip-sextet.  相似文献   

8.
Selenogermanates from Aqueous Solution: Preparation and Structure of Na4Ge2Se6 · 16 H2O Selenogermanates(IV) are prepared from aqueous solutions by reaction of alkali selenides with GeSe2. Na4Ge2Se6 · 16 H2O, being obtained from stoichiometric 1:1 quantities, is characterized by a complete X-ray structure analysis and by vibrational spectra. The compound is monoclinic (P21/c) with a = 9.894(4), b = 11.781(5), c = 12.225(6) Å, β = 92.90(4)°, Z = 2. It contains isolated Ge2Se64? anions consisting of two edge-sharing tetrahedra [Ge? Se 2.303(2)–2.419(2) Å] which are in contact to the hydrated octahedral [Na(H2O)6]+ ions through Se ? H? O bridges within an extensive hydrogen bridge system. Raman-active vibrations are observed at 306, 294, 207, 139, and 121 cm?1. Adamantane-like Ge4Se104? can be prepared in a similar way as Ge2Se64? if a 1:2 molar ratio of alkali selenide to GeSe2 is employed.  相似文献   

9.
Eu5Ge3 and EuIrGe2 were prepared from the elements in tantalum tubes, and their crystal structures were determined from single crystal X-ray data. Eu5Ge3 adopts the structure of Cr5B3: I4/mcm, a = 799.0(1)pm, c = 1 536.7(1)pm, Z = 4, wR2 = 0.0421 for 669 F2 values and 16 variables. The structure of Eu5Ge3 contains isolated germanium atoms and germanium atom pairs with a Ge? Ge distance of 256.0 pm. Eu5Ge3 may be described as a Zintl phase with the formulation [5 Eu2+]10+[Ge]4?[Ge2]6?. Magnetic investigations of Eu5Ge3 show Curie-Weiss behaviour above 50 K with a magnetic moment of μexp = 7.6(1) μB which is close to the free ion value of μeff = 7.94 μB for Eu2+. EuIrGe2 is isotypic with CeNiSi2: Cmcm, a = 445.5(2) pm, b = 1 737.4(4) pm, c = 426.6(1) pm, Z = 4, wR2 = 0.0507 for 295 F2 values and 18 variables. The structure of EuIrGe2 is an intergrowth of ThCr2Si2-like slabs with composition EuIr2Ge2 and AlB2-like slabs with composition EuGe2 in an AB stacking sequence. Both slabs are distorted when compared to the symmetry of the prototypes. The Ge? Ge distance of 256.6 pm in the AlB2-like fragment is comparable to that in Eu5Ge3.  相似文献   

10.
Tetrarubidiumnonagermanid(4–)-ethylendiamin, Rb4[Ge9][en] Orange-farbene Kristalle von Rb4[Ge9][en] erhält man nach der Austauschreaktion einer Lösung von ,NaGe2.25‘ (precursor) in Ethylendiamin (en) mit festem RbI bei 360 K und nachfolgender langsamer Abkühlung. Die Verbindung ist äußerst empfindlich gegen Oxidation und Hydrolyse. Der thermische Abbau im dynamischen Vakuum beginnt mit der vollständigen Abgabe von en bei 350 K. Es folgt die Sublimation von Rubidium in vier weiteren Stufen (Rb8Ge25, Rb8Ge44, RbxGe136 mit x È 16, Ge). Das Ramanspektrum zeigt die charakteristischen Banden des Anions [Ge9]4– bei 151, 163, 185 und 222 cm–1. Rb4[Ge9][en] kristallisiert in einem neuen Strukturtyp (Raumgruppe P21/m; a = 15.353 Å, b = 16.434 Å, c = 15.539 Å, β = 113.75°; Z = 6; Pearsonsymbol mP198-40), der als hierarchische Variante der Strukturen von Al4YbMo2 und CrB4 (hierarchische Basistypen, „initiators”︁) beschrieben werden kann, indem Atome partiell durch Aggregate ersetzt werden: B4[□][Cr] ≙ Al4[Yb][Mo]2 ≙ Rb4[Ge9][en]1–2. Drei kristallographisch unabhängige [Ge9]4–-Cluster sind in ein vierbindiges 465-Netz aus Rb-Atomen eingebettet, ein Netzwerk kondensierter Tetraasterane. Die Cluster sind verzerrte überkappte tetragonale Antiprismen mit D1(Ge–Ge) = 2.57 Å (16 Ç ) und D2(Ge–Ge) = 2.84 Å (4 Ç ). Die Atome der Cluster mit D1 und D2 liegen auf der Oberfläche eines Rotationsellipsoids (a = b = 2.136 Å, c = 2.431 Å). Die en-Moleküle befinden sich in offenen Kanälen entlang [1¯ 0 1]. Die Koordinationen [Ge9]Rb12/4 und Rb [Ge9]4/12 en2/8 zeigen, daß beim ersten Schritt der Solvatisierung Kationen und Clusteranionen nicht voneinander getrennt werden.  相似文献   

11.
On Polygermanes. X. Vibrational Spectra of the Homorings (Ph2Ge)4, (Ph2Ge)5, and (Ph2Ge)6 IR and Raman transitions of the crystalline title compounds are given from 3100 to 100 cm?1. The spectra are nearly identical above 350 cm?1. The Gen ring vibrations range from 330 to 140 cm?1 and are unspecifically coupled with mass sensitive phenyl modes. The distribution of the individual values is discussed by means of the intracyclic bond angles determined by X-ray structure analysis.  相似文献   

12.
Vibrational and Electronic Spectra of Decahalogenodiosmates(IV), [Os2X10]2?, X ? Cl, Br The IR and Raman spectra of the edge-sharing bioctahedral anions [Os2X10]2?, X ? Cl, Br, are assigned according to point group D2h. The bands are found in three characteristic regions; at high wavenumbers stretching vibrations with terminal ligands v(OsClt): 365–280, v(OsBrt): 235–195; in a middle region with bridging ligands v(OsClb): 270–240, v(OsBrb): 175–165 cm?1; the deformation bands are observed at distinct lower frequencies. The electronic spectra of the dimers show intraconfigurational transitions near 2000, 1000, and 600 nm which by position and intensity correspond to those of the monomeric complexes. They are therefore discussed separately for both metal centers according to C2v symmetry. Two additional band systems are presumable pair transitions arising from interactions of the central ions within the dimeric complexes. Due to the different bonding strength of terminal or bridging ligands the intensive charge transfer bands are shifted by 3000–4000 cm?1 bathochromicly or by 2000–3000 cm?1 hypsochromicly compared with the hexahaloosmates(IV).  相似文献   

13.
Colour and Constitution for Mnv in Tetrahedral Oxygen Coordination. I. An EPR and Ligand Field Spectroscopic Investigation of Mnv in Apatite Phases and the Structure of Ba5(MnO4)3Cl Mnv was Stabilized in the tetrahedral sites of oxidic apatite-phases. The colour of the Green and blue mixed crystals is discussed on the basis of the ligand field spectra. A single crystal Structure determination of Ba5(MnO4)3Cl yielded a Mnv? O spacing of 1.70(1) Å, by 0.16 Å larger than the Pv? O bond length in the corresponding phosphate-apatite. The symmetry of the Mn vO43?-tetrahedra was analysed by means of the EPR powder spectra, which yielded zero-field splitting parameters D = 0.4–0.5 cm?1 and E = 0.05–0.07 cm?1.  相似文献   

14.
Na12Ge17 is prepared from the elements at 1025 K in sealed niobium ampoules. The crystal structure reinvestigation reveals a doubling of the unit cell (space group:P21/c; a = 22.117(3)Å, b = 12.803(3)Å, c = 41.557(6)Å, β = 91.31(2)°, Z = 16; Pearson code: mP464), furthermore, weak superstructure reflections indicate an even larger C‐centred monoclinic cell. The characteristic structural units are the isolated cluster anions [Ge9]4— and [Ge4]4— in ratio 1:2, respectively. The crystal structure represents a hierarchical cluster replacement structure of the hexagonal Laves phase MgZn2 in which the Mg and Zn atoms are replaced by the Ge9 and Ge4 units, respectively. The Raman spectrum of Na12Ge17 exhibits the characteristic breathing modes of the constituent cluster anions at ν = 274 cm—1 ([Ge9]4—) and ν = 222 cm—1 ([Ge4]4—) which may be used for identification of these clusters in solid phases and in solutions. Raman spectra further prove that Na12Ge17 is partial soluble both in ethylenediamine and liquid ammonia. The solution and the solid extract contain solely [Ge9]4—. The remaining insoluble residue is Na4Ge4. By heating the solvate Na4Ge9(NH3)n releases NH3 and decomposes irreversibly at 742 K, yielding Na12Ge17 and Ge.  相似文献   

15.
Vibrational spectra of the compounds M4E4 (M = K, Rb, Cs; E = Ge, Sn) and of β‐Na4Sn4 with the cluster anions [E4]4? were analysed based on the point group of isolated tetrahedranide units. The lower individual symmetry of the anions in the real structure being more patterned and complex primarily affects the spectra of the tetrahedro‐tetragermanides. ν3(F2) clearly splits both in Raman and IR and in the case of K4Sn4 only in IR. Rb4Sn4 and Cs4Sn4 exhibit very simple spectra with three bands in Raman and one band in IR. The breathing mode ν1(A1) for the quasi isolated [E4]4? cluster appears only in the Raman spectrum and is hardly influenced by the structural environment and by the nature of the alkali metal cations: ν1(A1) = 274 cm?1 ([Ge4]4?) and 183‐187 cm?1 ([Sn4]4?), respectively. The calculated valence force constants fd(E–E) are: [Ge4]4? : fd = 0.89 Ncm?1 ( K ), 0.87 Ncm?1 ( Rb ), 0.86 Ncm?1 ( Cs ) and [Sn4]4? : 0.67 Ncm?1 ( Na ), 0.66 Ncm?1 ( K ), 0.67 Ncm?1 ( Rb ), 0.68 Ncm?1 ( Cs ). Both, the frequencies and the force constants fit well into the range previously reported.  相似文献   

16.
The novel metalloid germanium cluster [Ge9(Hyp)2HypGe] ( 1 ) was synthesized, exhibiting two different bulky groups [Hyp = Si(SiMe3)3; HypGe = Ge(SiMe3)3]. Further reaction of 1 with ZnCl2 gives the derivative [ZnGe18(Hyp)4(HypGe)2] ( 2 ) in good yield, showing that the substitution of Si(SiMe3)3 by Ge(SiMe3)3 within a metalloid Ge9R3 compound leads to a comparable reactivity. 1 and 2 are characterized by NMR spectroscopy, mass spectrometry ( 1 ) and single crystal structure analyses ( 2 ). 1 and 2 are the first metalloid germanium clusters bearing germyl groups.  相似文献   

17.
The Raman spectrum of a single crystal of FeF2 is reported and the transitions in the range of 900–1500 cm?1 are assigned to the spin-orbit levels of the Fe2+ ion in a field of D2h symmetry. The value of the tetragonal and rhombic distortion parameters calculated from the spectra are ?1162 cm?1 and 110 cm?1, respectively and the spin-orbit coupling parameter λ = ?91.3 cm?1. The computed energy level diagram is in agreement with the EPR spectrum of this compound.  相似文献   

18.
The ion-oxygen conductivity of apatite-like compounds based on lanthanum silicates and germanates La10A6O27 (A = Si, Ge), La10?x CaxSi6O27?δ (x = 0.25, 0.5, 1.0), La9.75Ca0.25Ge6O27?δ and La9.33+δSi6?x AlxO26(x=0.4, 0.8, 1.5) is studied in the interval of partial oxygen pressures pO2 extending from 10?16 to 105 Pa, at temperatures of 500–1000°C. The electroconductivity of undoped compounds La10A6O27 (A = Si, Ge) exceeds that of yttria-stabilized zirconia. The electroconductivity of lanthanum germanate (1.7 × 10?2 and 8.5 × 10?2S cm?1 at 700 and 900°C, respectively) is substantially higher than that of lanthanum silicate (9.8 × 10?3 and 3.5 × 10?2 S cm?1 at 700 and 900°C). Doping lanthanum germanate with calcium raises its electroconductivity (2.7 × 10?2 and 1.3 × 10?1 S cm?1 for La9.75Ca0.25Ge6O27?δ at 700 and 900°C). Conversely, doping lanthanum silicate with ions of calcium or aluminum reduces the conductivity. In the pO2 interval studied, the above compounds are ionic conductors and represent a class of solid electrolytes of promise for various electrochemical devices.  相似文献   

19.
The infrared absorption spectra of some dialkyldimethoxystannanes have been investigated in the 400–1500 cm?1 region. The bands associated with vs(SnC2) and vs(SnO2) vibrations have been found at 510–521 cm?1 and 466–475 cm?1. The group of bands between 560 and 620 cm?1 is assigned jointly to va(SnC2) and va(SnO2) vibrations. v(C? O) of the methoxy groups linked to tin appears at 1064–1068 cm?1.  相似文献   

20.
The addition of Sn and Zn ions to [Ge9] clusters by reaction of [Ge9]4? with SnPh2Cl2, ZnCp*2 (Cp*=pentamethylcyclopentadienyl), or Zn2[HC(Ph2P=NPh)2]2 is reported. The resulting Sn‐ and Zn‐bridged clusters [(Ge9)M(Ge9)]q? (M=Sn, q=4; M=Zn, q=6) display various coordination modes. The M atoms that coordinate to the open square of a C4v‐symmetric [Ge9] cluster form strong covalent multicenter M?Ge bonds, in contrast to the M atoms coordinating to triangular cluster faces. Molecular orbital analyses show that the M atoms of the Ge9M fragments coordinate to a second [Ge9] cluster with similar orbitals but in different ways. The [Ge9Sn]2?unit donates two electrons to the triangular face of a second [Ge9]2? cluster with D3h symmetry, whereas [Ge9Zn]2?acts as an electron acceptor when interacting with the triangular face of a D3h‐symmetric [Ge9]4? unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号