首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal Complexes with Anionic Ligands of the Main Group IV Elements. IX. Reactions of Trichlorostannide and Trichlorogermide Ions with Complexes of Transition Metals in Low Oxidation States Carhonyl trichlorostannido- and carbonyl trichlorogermido-metalate complexes have been synthesized both by photochemical and thermical substitution reactions of [ECl3]? ions (E = Sn, Ge) with M(CO)6, (M = Cr, Mo, W), Fe(CO)5 Fe3(CO)12, Co2(CO)8, as well as with the metalcarbonyl derivatives (π-arene)M(CO)3, (M = Cr, Mo), (h5-C5,H5,)V(CO)4, Mn(CO)5,Cl, Co(NO)(CO)3, and Fe(NO)2,(CO)2. Mainly the bonding properties of the [ECl3]? ligands are discussed by means of i.r. spectroscopic investigations. The progress of the reactions and the necessary reaction conditions show that the nucleophilic properties oft both anions [ECl3]? are unexpectedly small. The slightly weaker hasicity of [SnCl3]? compared with [GeC13]? arreared, when both anions were reacted with Co2,(CO)8, forming the substitution product. [Co2,(CO)7,SnCl3]? and the products of a “base reaction” Cl3GcCo(CO)4, and [Co(CO)4]?.  相似文献   

2.
Reduction of several metal carbonyl dimers including Mn2](CO)10, [C5H5Fe(C0)2]2, Co2(CO)8, and [C5H5M(CO)3]2 (M = Cr, Mo and W) by sodium—potassium alloy (NaK) in tetrahydrofuran at room temperature provides a rapid and clean method for the production of the corresponding metal carbonyl anions in high yield. Isolation and characterization of [n-Bu4N] [Fe(CO)2C5H5] from the iron dimer reduction is described. Reductions of other carbonyls including M(CO)6 (M = Cr, Mo and W) and Re2(CO)10 proceed more slowly than previously established methods and provide principally M2(CO)102? and Re(CO)55?. Methods for the preparation of Re(CO)5? are critically considered. The reaction of NaK with [C5H5NiCO]2 is discussed in relation to previously reported results. Infrared solution spectra of a number of carbonyl anions in THF, obtained in a special infrared solution cell, are reported.  相似文献   

3.
Formation of Organosilicon Compounds. 88. SiH-Addition of 1,3,5-Trisilacyclohexanes to Silylalkynes Catalyzed by means of H2PtCl6 the SiH addition of 1,1,3,3,5-pentamethyl-1,3,5-trisilacyclohexane to HC?C? Sime2CH2Cl, and of 1,1,3,3,5-pentaphenyl-1,3,5-trisilacyclohexane to HC?C? Sime2CH2Br yields a and b , or c and d , resp. (Formulae see Inhaltsübersicht), whereas 1,3,5-trisilacyclohexanes with more SiH groups preferrably yield polymers. The c/d ratio is strongly governed by the solvent: 38% c in n-hexane, 72% c in CCl4/cyclohexane. Treatment of c and d with HCl/AlCl3 under cleavage of all of the phenyl groups, addition of HCl to the vinyl group and subsequent β-elimination leads to (Cl2Si? CH2)3 ClSime2? CH2Br and compound e , whereas HBr at ?78°C only cleaves one phenyl group per Si atom.  相似文献   

4.
Abstract

Reactions of metal carbonyl cations (M(CO)6 +, M = Mn, Re) with hydride-, methide- or halide-containing metal carbonyl anions (Fe(CO)4R?, R = H, Me; W(CO)5R?, R = H, Me, Cl, Br, I) produce products that indicate several mechanisms are operative. Reactions of the halo-tungsten complexes produce neutral, solvated tungsten complexes, W(CO)5(CH3CN) and W(CO)4(CH3CN)2 and M(CO)5X in a reaction that appears to be initiated by decomposition of W(CO)5X?. In contrast, the tungsten hydride and methide complexes react, predominantly, by transfer of the hydride or methide to a carbonyl of the cation at a much faster rate. The iron hydride and methide complexes react by iron-based nucleophilicity involving a two-electron process.  相似文献   

5.
Starting with the cyclopentadienyl(carbonyl)metal anions [π-C5H5(CO)3M]? (M = Cr, Mo, W) and (CH3)2SbBr, transition metal-substituted stibines of the form π-C5H5(CO)3MSb(CH3)2 are obtained. The nucleophilic character of the VB element primarily determines the reactivity of these species, and shows itself in alkyl halide quarternization (a) or ligand exchange on activated metal carbonyl complexes (b). (a) yields the trialkylstibine-substituted metal cations [π-C5H5-(CO)3MSb(CH3)2R]X (R = CH3, CH2CH=CH2, CH2C6H5; X = Br, J), (b) leads to the formation of the metal carbonyl derivatives LM(CO)5, L2M(CO)4 (M = Cr, Mo, W), LNi(CO)3 and LFe(CO)4 [L = (CH3)2SbM(CO)3-π-C5H5] which are the first (CH3)2Sb-bridged polynuclear complexes. Phosphorus ylides cause heterolytic cleavage of the antimonytransition metal bond. Transfer of the (CH3)2Sb-group to the ylidic carbanion occurs via substitution/transylidation. All new compounds have been fully characterized by means of 1H NMR, IR and mass spectroscopy  相似文献   

6.
The reactions of metal carbonyl anions (M(CO)n?; M = Cr, Mn and Fe; n = 1–3) with n-heptane, water and methanol were studied with use of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an external ion source. The M(CO)n? ions were formed in the FT-ICR cell by collision-induced dissociation of the most abundant primary ion generated by electron impact of the appropriate metal carbonyl compound present in the external ion source. The M(CO)n? ions were allowed subsequently to undergo non-reactive collisions with argon in order to remove possible excess internal/translational energy prior to the ion/molecule reaction. Only the Cr(CO)3?, Mn(CO)3? and Fe(CO)2? ions react with n-heptane. This reaction proceeds by loss of H2 from the collision complex and the Cr(CO)3? and Fe(CO)2? ions react about three times more efficiently than the Mn(CO)3? ion. With water, Mn(CO)? and Fe(CO)3? are unreactive, whereas the other ions react by loss of one or two CO molecules from the collision complex. The rate of the reaction with water decreases in the order Cr(CO)3?, Fe(CO)2?, Cr(CO)2?, Fe(CO)?, Mn(CO)3? and Mn(CO)2?. With methanol, the Cr(CO)2? ion reacts by loss of two CO molecules from the collision complex, whereas loss of one CO molecule and elimination of CO + H2 occur in the reaction with Cr(CO)3?. Competing loss of CO and one or two H2 molecules occurs in the reactions of Mn(CO)3? and Fe(CO)2? with methanol. The rate of the reaction with methanol decreases in the order Cr(CO)3?, Fe(CO)2?, Cr(CO)2? and Mn(CO)3?.  相似文献   

7.
School of Chemistry, University of New South Wales, Kensington, Australia Institute of Mass Spectrometry, University of Amsterdam, Nieuwe Achtergracht The gas-phase reactions of coordinatively unsaturated metal carbonyl anions (M(CO) n ? , M=Cr, Mn, Fe, Co; n=0-3 and Co(CO)nNO?, n=0-2) with unlabeled and D- and 13C-labeled methyl formate have been studied with Fourier transform ion cyclotron resonance mass spectrometry. The reactions proceed in most instances by loss of one or more CO molecules from the collision complex. In the reactions of the dicarbonyl and tricarbonyl anions with H13COOCH3, part of the eliminated carbon monoxide molecules contain the label revealing the occurrence of initial insertion of the metal center into the bonds adjacent to the carbonyl function of the substrate with formation of five- or six-coordinate intermediates, respectively. In addition, the MnCCO) 3 ? , Fe(CO) 2 ? , and CoCCO) 2 ? ions react by the loss of methanol and a [C,H2,O] neutral species. The D- and 13C-labeling show that methanol is expelled in a reductive elimination from a five- or six-coordinate species, whereas the [C,H2,O] loss is a more complex process possibly involving the competing losses of formaldehyde and CO + H2. In the reaction of Fe(CO) 3 ? with H 13 13 COOCH3, a facile consecutive exchange of all three CO ligands of the reactant ion for 13CO is observed. This novel reaction appears to involve initial insertion into the H13CO—OCH3-bond followed by facile hydrogen shifts from the formyl ligand to a CO Hgand prior to the loss of unlabeled methyl formate.  相似文献   

8.
[Ir4(CO)11X]? anions are obtained by reaction of halide and pseudo-halide ions with Ir4(CO)12. X-ray determination of the structure of [Ir4(CO)11Br]? shows that the carbonyl arrangement differs from that of the parent Ir4(CO)12, and is similar to that known for Co4(CO)12; one terminal CO group in the basal M3(CO)9 moiety is replaced by the bromide ligand, and two of the bridging CO groups become markedly asymmetric.  相似文献   

9.
Homoleptic carbonyl cations of the electron-rich metals in Groups 8 through 12 are the newest members of the large family of transition metal carbonyls. They can be distinguished from typical metal carbonyl complexes in several respects. Their synthesis entails carbonylation of metal salts in such superacids as fluorosulfuric acid and “magic acid” HSO3F? SbF5. Thermally stable salts with [Sb2F11]? as counterion are obtained with antimony pentafluoride as reaction medium. Both the [Sb2F11]? anion and superacid reaction media have previously found little application in the organometallic chemistry of d-block elements. Also unprecedented in metal carbonyl chemistry are the coordination geometries with coordination numbers 4 (square-planar coordination) and 2 (linear coordination) for the cation. Formal oxidation states of the metals, and the charges of the complex cations, extend from + 1 to +3: thus CO is largely σ-bonded to the metal, and the CO bond is strongly polarized. Minimal metal → CO π-backbonding and a positive partial charge on carbon are manifested in long M? C bonds, short C? O bonds, high frequencies for C? O stretching vibrations (up to 2300 cm?1), and small 13C NMR chemical shifts (up to δc, = 121). Prominent examples of these unusual homoleptic carbonyl cations, which were recently the subject of a Highlight in this journal, include the first carbonyl cation of a p-block metal [Hg(CO)2]2+, the first trivalent carbonyl cation [Ir(CO)6]3+, and the first multiply charged carbonyl cation of a 3d metal [Fe(CO)6]2+. In this overview we propose to (a) outline the historical origins of cationic metal carbonyls and their methods of synthesis; (b) present a summary of the general field of carbonyl cations, which has developed over a yery short period of time; (c) discuss the structural and spectroscopic characteritics of metal–CO bonding; (d) discuss the special significance associated with reaction media and the [Sb2F11]? anion; and (e) point to the most recent results and anticipated future developments.  相似文献   

10.
Quaternary ammonium borohydrides, used directly or generated in phase transfer reactions, are highly effective reagents for preparing metal carbonyl anions from metal carbonyls [Mo(CO)6, Mn2(CO)10, Re2(CO)10, CO2(CO)8, Fe3(CO)12, Ru3(CO)12 and (η5-C5H5)2Mo2(CO)6] and from some metal carbonyl halides [BrMn(CO)5 and η5-C5H5Mo(CO)3Cl]. Where strongly basic anions would be formed from a halide [BrMn(CO)4PPh3 and η5-C5H5Ru(CO)2Br], the reactions provide efficient syntheses of the corresponding hydrides instead. The anion η5-C5H5Fe(CO)2? is not accessible by these techniques; reaction of η5-C5H5Fe(CO)2Br yields the iron dimer (via the highly nucleophilic anion) and the dimer is unreactive toward Q+BH4?. Reductions of Re2(CO)10 conducted in CH2Cl2 provide Re2(CO)9Cl? in high yield.  相似文献   

11.
The reactivity of a series of metal carbonyl anions with CO2 has been found to parallel their relative nucleophilicities. The highly nucleophilic species, C5H5Fe(CO)?2, reacts readily to give the dimer, (C5H5Fe(CO)2)2, and carbonate while Co(CO)?4 is unreactive. The reaction of 13CO2 with C5H5Fe(CO)?2 results in the formation of the 13CO enriched dimer.  相似文献   

12.
The anions [Rh6(CO)15X]?, with X = COEt and CO(OMe), have been studied by single-crystal X-ray diffraction. They contain octahedral rhodium clusters, with mean metalmetal distances of 2.779 and 2.765 », respectively. The carbonyl stereochemistry in the two anions is similar to that of Rh6(CO)16, with one terminal CO group replaced by the X ligand. The RhC(carbomethoxy) bond distance (1.96(2) ») is significantly shorter than the RhC(acyl) distance (2.06(2) »).  相似文献   

13.
Metalloradical species [Co2Fv(CO)4].+ ( 1 .+, Fv=fulvalenediyl) and [Co2Cp2(CO)4].+ ( 2 .+, Cp=η5‐C5H5), formed by one‐electron oxidations of piano‐stool cobalt carbonyl complexes, can be stabilized with weakly coordinating polyfluoroaluminate anions in the solid state. They feature a supported and an unsupported (i.e. unbridged) cobalt–cobalt three‐electron σ bond, respectively, each with a formal bond order of 0.5 (hemi‐bond). When Cp is replaced by bulkier Cp* (Cp*=η5‐C5Me5), an interchange between an unsupported radical [Co2Cp*2(CO)4].+ (anti‐ 3 .+) and a supported radical [Co2Cp*2(μ‐CO)2(CO)2].+ (trans‐ 3 .+) is observed in solution, which cocrystallize and exist in the crystal phase. 2 .+ and anti‐ 3 .+ are the first stable thus isolable examples that feature an unsupported metal–metal hemi‐bond, and the coexistence of anti‐ 3 .+ and trans‐ 3 .+ in one crystal is unprecedented in the field of dinuclear metalloradical chemistry. The work suggests that more stable metalloradicals of metal–metal hemi‐bonds may be accessible by using metal carbonyls together with large and weakly coordinating polyfluoroaluminate anions.  相似文献   

14.
η2-Acyl and σ-Alkyl(carbonyl) Coordination in Molybdenum and Tungsten Complexes: Synthesis and Studies of the Isomerization Equilibria and Kinetics The anionic molybdenum and tungsten complexes [LRM(CO)3]? (LR? = [(C5H5)Co{P(O)R2}3]?, R = OCH3, OC2H5, O-i-C3H7; M = Mo, W) have been alkylated with the iodides R′ I, R′ = CH3, C2H5, i-C3H7, and CH2C6H5. The reactivity pattern of the alkylation is in accord with a SN2 mechanism. Depending on M, R′, reaction temperature, and time the η-alkyl (carbonyl) compounds [LRM(CO)3R′] and/or the isomeric η2-acyl compounds [LRM(CO)22-COR′)] can be obtained. 8 new σ-alkyl(carbonyl) compounds and 15 new η2-acyl compounds have been isolated and characterized. The 1H NMR and the IR spectra give conclusive evidence that the σ-alkyl(carbonyl) compounds [LRM(CO)3R′] are formed as the primary products of the alkylation and that they isomerize partly or completely to give the η2-acyl compounds [LRM(CO)22-COR′)]. The position of the equilibrium σ-alkyl(carbonyl)/η2-acyl is controlled by the steric demands of the groups R′ and the ligands LR?. The molybdenum compounds isomerize much more readily than the tungsten compounds. The rate constants of the isomerization processes [LRMo(CO)3CH3] → [LRMo(CO)22-COCH3)], R = OCH3, OC2H5, and O-i-C3H7, measured at 305 K in acetone-d6, are 6–8 x 10?3 s?1.  相似文献   

15.
Reduction of neutral metal clusters (Co4(CO)12, Ru3(CO)12, Fe3(CO)12, Ir4(CO)12, Rh6(CO)16, {CpMo(CO)3}2, {Mn(CO)5}2) by decamethylchromocene (Cp*2Cr) or sodium fluorenone ketyl in the presence of cryptand[2.2.2] and DB‐18‐crown‐6 was studied. Nine new salts with paramagnetic Cp*2Cr+, cryptand[2.2.2](Na+), and DB‐18‐crown‐6(Na+) cations and [Co6(CO)15]2– ( 1 , 2 ), [Ru6(CO)18]2– ( 3 – 4 ) dianions, [Rh11(CO)23]3– ( 6 ) trianions, and new [Ir8(CO)18]2– ( 5 ) dianions were obtained and structurally characterized. The increase of nuclearity of clusters under reduction was shown. Fe3(CO)12 preserves the Fe3 core under reduction forming the [Fe3(CO)11]2– dianions in 7 . The [CpMo(CO)3]2 and [Mn(CO)5]2 dimers dissociate under reduction forming mononuclear [CpMo(CO)3] ( 8 ) and [Mn(CO)5] ( 9 ) anions. In all anions the increase of negative charge on metal atoms shifts the bands attributed to carbonyl C–O stretching vibrations to smaller wavenumbers in agreement with the elongation of the C–O bonds in 1 – 9 . In contrast, the M–C(CO) bonds are noticeably shortened at the reduction. Magnetic susceptibility of the salts with Cp*2Cr+ is defined by high spin Cp*2Cr+ (S = 3/2) species, whereas all obtained anionic metal clusters and mononuclear anions are diamagnetic. Rather weak magnetic coupling between S = 3/2 spins is observed with Weiss temperature from –1 to –11 K. That is explained by rather long distances between Cp*2Cr+ and the absence of effective π–π interaction between them except compound 7 showing the largest Weiss temperature of –11 K. The {DB‐18‐crown‐6(Na+)}2[Co6(CO)15]2– units in 2 are organized in infinite 1D chains through the coordination of carbonyl groups of the Co6 clusters to the Na+ ions and π–π stacking between benzo groups of the DB‐18‐crown‐6(Na+) cations.  相似文献   

16.
The reaction of Ir4(CO)12 with potassium hydroxide in methanol and/or with sodium in tetrahydrofuran leads to the carbonyliridate anions [HIr4(CO)11]?, [Ir6(CO)22]2?, [Ir8(CO)20]2?, [Ir6(CO)15]2? and [Ir(CO)4]? obtained as salts with bulky cations. From these, the tetranuclear carbonyl hydride H2Ir4(CO)11 and the hexanuclear carbonyl compound Ir6(CO)16 are also obtained.  相似文献   

17.
Energy-resolved collision-induced dissociation of metal cyclopentadienyl carbonyl anions CpM(CO)x(Cpc-C5H5, MV, Cr, Mn, Fe, Co) is used to determine metal–carbonyl bond energies in these systems. These bond energies are, in general, slightly stronger than those for the corresponding homoleptic metal carbonyl anions. The bond strength in CpCo(CO)2, a 19-electron complex, is notably weaker than most of the others. D[CpMn-CO] is also weak; this is attributed to a mismatch in the electronic ground states of CpMn and CpMnCO. D[CpCo-CO], on the other hand, is substantially larger than the others, and is comparable to the bond energy measured in solution for CpMn(CO)3.  相似文献   

18.
The reaction of CuI, AgI, and AuI salts with carbon monoxide in the presence of weakly coordinating anions led to known and structurally unknown non‐classical coinage metal carbonyl complexes [M(CO)n][A] (A=fluorinated alkoxy aluminates). The coinage metal carbonyl complexes [Cu(CO)n(CH2Cl2)m]+[A]? (n=1, 3; m=4?n), [Au2(CO)2Cl]+[A]?, [(OC)nM(A)] (M=Cu: n=2; Ag: n=1, 2) as well as [(OC)3Cu???ClAl(ORF)3] and [(OC)Au???ClAl(ORF)3] were analyzed with X‐ray diffraction and partially IR and Raman spectroscopy. In addition to these structures, crystallographic and spectroscopic evidence for the existence of the tetracarbonyl complex [Cu(CO)4]+[Al(ORF)4]? (RF=C(CF3)3) is presented; its formation was analyzed with the help of theoretical investigations and Born–Fajans–Haber cycles. We discuss the limits of structure determinations by routine X‐ray diffraction methods with respect to the C? O bond lengths and apply the experimental CO stretching frequencies for the prediction of bond lengths within the carbonyl ligand based on a correlation with calculated data. Moreover, we provide a simple explanation for the reported, partly confusing and scattered CO stretching frequencies of [CuI(CO)n] units.  相似文献   

19.
Co2(CO)8 and Hg[Co(CO)4]2 react sodium amalgam and/or mercury in ethereal solvents to give a variety of products. On treatment with aqueous M(o-phen)3Cl2(M  Fe, Ni), the anions [Co(CO)4?, [Co3(CO)10]?, {Hg[Co(CO)4]3}? and {Hg[Co(CO)4]2Cl}? could be isolated as their [M(o-phen)3]2+ salts. The effect of LiBr on the reacting systems was also investigated and the anion {Hg[Co(CO)4]2Br}? isolated.  相似文献   

20.
The reaction of Co(CO)3DMPP? with Co2(CO)6(DMPP)2 (DMPP = dimethylphenylphosphine) yields CoCO4? and Co2(CO)5(DMPP)3. The DMPP ligand of Co(CO)3DMPP? can be replaced by CO or triphenylphosphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号