首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Contributions to the Chemistry of Phosphorus. 134. On the Triphosphanes H(t-BuP)3H' Li(t-BuP)3Li, and Me3Si(t-BuP)3SiMe3 The reaction of 1,3-diiodo-1,2,3-tri-tert-butyltriphosphane, I(t-BuP)3I, with lithium aluminium hydride leads to 1,2,3-tri-tert-butyltriphosphane, H(t-BuP)3H ( 1 ). 1 reacts with n-butyllithium to 1,3-dilithium-1,2,3-tri-tert-butyltriphosphide, Li(t-BuP)3Li ( 2 ), which reacts further with trimethylchlorosilane yielding 1,3-bis(trimethylsilyl)-1,2,3-tri-tert-butyltriphosphane, Me3Si(t-BuP)3SiMe3 ( 3 ). The triphosphanes 1, 2 and 3 could be isolated in a pure state. In solution 1 forms the threo, threo and the threo,erythro configurated diastereomers 1a and 1b in a ratio of about 2:1. 3 predominantly exists in form of the threo,erythro configurated diastereomer 3b by steric reasons.  相似文献   

2.
Synthese of sulfonated derivatives of 2-amino-p-xylene Sulfonation of 2-amino-p-xylene (2) gave 2-amino-p-xylene-5-sulfonic acid (1) . The 2-amino-p-xylene-6-sulfonic acid (3) was prepared via three routes: (1) sulfonation of 2-amino-5-chloro-p-xylene (19) to 5-amino-2-chloro-p-xylene-3-sulfonic acid (20) followed by hydrogenolysis; (2) sulfur dioxide treatment of the diazonium salt derived from 2-amino-6-nitro-p-xylene (21) to 2-nitro-p-xylene-6-sulfonyl chloride (11) followed by hydrolysis to 2-nitro-p-xylene-6-sulfonic acid (4) and Béchamp reduction; (3) Béchamp reduction of 2-chloro-3-nitro-p-xylene-5-sulfonic acid (13) to 3-amino-2-chloro-p-xylene-5-sulfonic acid (16) and subsequent hydrogenolysis. Catalytic reduction of 13 in aqueous sodium carbonate solution gave mixtures of 3 and 16 . 2-Amino-p-xylene-3-sulfonic acid (27) was synthesized via two routes: (1) reaction of 19 with sulfamic acid to 2-amino-5-chloro-p-xylene-3-sulfonic acid (26) followed by hydrogenolysis; (2) sulfur dioxide treatment of the diazonium salt derived from 2-amino-3-nitro-p-xylene (28) to 2-nitro-p-xylene-3-sulfonyl chloride (12) , hydrolysis to 2-nitro-p-xylene-3-sulfonic acid (7) and Béchamp reduction.  相似文献   

3.
Three new carbohydrates were isolated from the acidic hydrolysis part of the ethyl acetate extract of Cynanchum otophyllum Schneid (Asclepiadaceae) and one new carbohydrate from the ethyl acetate extract of Cynanchum paniculatum Kitagawa. Their structures were determined as methyl 2,6-dideoxy-3-O-methyl-α-D-arabino-hexopyranosyl-(1 → 4)-2,6-deoxy-3-O-methyl-β-D-arabino-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-α-D-arabino-hexopyranoside (1), ethyl 2,6-dideoxy-3-O-methyl-β-D-ribo-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-α-l-lyxo-hexopyranoside (2), met hyl 2,6-dideoxy-3-O-methyl-α-l-ribo-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-β-D-lyxo-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-α-D-arabino-hexopyranoside (3), and 2,6-dideoxy-3-O-methyl-β-D-ribo-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-α-d-arabino-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-α -d-arabino-hexopyranose (4), respectively, by spectral methods.  相似文献   

4.
The sponges Raspailia pumila and ramosa (Demospongiae, Tetractinomorpha, Axinellida) from the North-East Atlantic are shown to contain a series of novel long-chain enol ethers of glycerol where the enol ether C?C bond is conjugated, in sequence, to both an acetylenic and an olefinic bond. Polar extracts give raspailynes hydroxylated at their (1Z5Z)-1,5-alkadien-3-ynyl chain, like raspailyne Al ( = (+)-(S)-3-[((1Z,5Z)-16-hydroxy-hexadeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; (+ 2 ) and isoraspailyne A ( = (+)-3-[((1Z,5Z)-17-hydroxyocta-deca-1,5-dien-3-ynyl)oxy]-1,2-[propanediol; (+)- 3 ). Less polar extracts give 3 different types of raspailynes not hydroxylated at the chain. Raspailynes of the first type have either the (1Z,5Z)-configuration in a linear chain such as raspailyne B2 (( = (?)-(s)-3-[((1Z,5Z)-trideca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; (?)-4), raspailyne Bl ( = (?)-3-[((1Z,5Z)-tetradeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol;(?)- 5 ), and raspailyne B ( = 3-[((1Z,5Z)-pentadeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 6 ) or the (1Z,5Z)-pentadeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 6 )or the (1Z,5Z)-configuration in a chain ending with an isopropyl group, like isoraspailyne Bl ( = 3-[((1Z,5Z)-12-methyltrideca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 7 ) and isoraspailyne B ( = 3-[((1Z,5Z)-13-methyltetradeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 8 ). Raspailynes of the second type have the (1Z,5E)-configuration, like isoraspailyne Bla ( =3-[((1Z,5E)-tetradeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 9 ) and isoraspailyne Ba ( = 3-[((1Z,5E)-13-methyltetradeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 10 ). Raspailynes of the third type have the (1E,5Z)-configuration, like isoraspailyne Blb ( = 3-[((1E,5Z)-tetradeca-1,5-dien-3-ynyl)oxy]-1,2,-propanediol; 11 ). The (S)-configuration for (+)- 1 ,((+)- 2 , and (?)- 4 is derived from chemical correlations.  相似文献   

5.
Synthesis of Optically Active Natural Carotenoids and Structurally Related Compounds. V. Synthesis of (3R, 3′R)-, (3S, 3′S)- and (3R,3′S; meso)-zeaxanthin by Asymmetric Hydroboration. A New Approach to Optically Active Carotenoid Building Units The synthesis of (3R, 3′R)-, (3S, 3′S)- and (3R,3′S; meso)-zeaxanthin ( 1 ), ( 19 ) and ( 21 ) is reported utilizing asymmetric hydroboration as the key reaction. Thus, safranol isopropenylmethylether ( 4 ) is hydroborated with (+)- and (?)-(IPC)2BH to give the optically pure key intermediates 5 and 7 resp., which are transformed into the above-mentioned C40-compounds.  相似文献   

6.
Two trans stereoisomers of 3‐methylcyclopentadecanol (=muscol), (1R,3R)‐ 2 and (1S,3S)‐ 2 , were efficiently synthesized from (3RS)‐3‐methylcyclopentadecanone (=muscone; (3RS)‐ 1 ) by a highly stereoselective reduction (Scheme). L‐Selectride® (=lithium tri(sec‐butyl)borohydride) was used, followed by the enantiomer resolution by lipase QLG (Alcaligenes sp.). The cis stereoisomers of muscol, (1S,3R)‐ 2 and (1R,3S)‐ 2 , were obtained by the Mitsunobu inversion of (1R,3R)‐ 2 and (1S,3S)‐ 2 , respectively (Scheme). The absolute configuration of (1R,3R)‐ 2 was determined by X‐ray crystal‐structure analysis of its 3‐nitrophthalic acid monoester, 2‐[(1R,3R)‐3‐methylcyclopentadecyl hydrogen benzene‐1,2‐dicarboxylate ((1R,3R)‐ 3b ), and by oxidation of (1R,3R)‐ 2 to (3R)‐muscone.  相似文献   

7.
Cyclization of N-acyl-N′-(6-chloropyrid-2-yl)hydrazines ( 2a-2e ) with phosphorus oxychloride has produced several 5-chloro-s-triazolo[4,3-a]pyridines ( 3a-3e ). Nucleophilic displacement of the chlorosubstituent of 5-chloro-s-triazolo[4,3-a]pyridine ( 3a ) availed the 5-ethoxy ( 4a ) and 5-thioethoxy ( 4b ) derivatives and di(s-triazolo[4,3-a]pyrid-5-yl)sulfide ( 8 ) while reaction of 5-ethylsulfonyl-s-triazolo[4,3-a]pyridine ( 4d ) with potassium hydroxide yielded the 5-hydroxy/5-one system ( 4c or 6 ). Further reaction of 3a with bromine to give 3-bromo-5-chloro-s-triazolo-[4,3-a]pyridine ( 3g ) has provided the corresponding 3-cyano- and 3-carboxamido-5-chloro-s-triazolo[4,3-a]pyridine derivatives ( 3h and 3i ). Treatment of 6-chloro-2-hydrazinopyridine ( 1 ) with cyanogen bromide has provided 3-amino-5-chloro-s-triazolo[4,3-a]pyridine ( 3f ) which, with bromoacetaldehyde dimethyl acetal, transformed into 7-chloroimidazo[1,2-b]-s-triazolo[4,3-a]-pyridine ( 7 ). Finally, attempts at cyclizing N-oxalyl-N′-(6-chloropyrid-2-yl)hydrazine derivatives ( 2g-2i ) with intentions of preparing various 3-acyl-5-chloro-s-triazolo[4,3-a]pyridines for entry into other 3,5-disubstituted systems were unsuccessful.  相似文献   

8.
ABSTRACT

Ganglioside GM3 and KDN-ganglioside GM3, containing hexanoyl, decanoyl, and hexadecanoyl groups at the ceramide moiety have been synthesized. Selective reduction of the azido group in O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-O-(2,4-di-O-acetyl-6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-O-(3-O-acetyl-2,6-di-O-benzoyl-β-D-glucopyranosyl)-(1→1)-(2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (1) and O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-O-(2,4-di-O-acetyl-6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-O-(3-O-acetyl-2,6-di-O-benzoyl-β-D-glucopyranosyl)-(1→1)-(2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (2), coupling with hexanoic, decanoic, and hexadecanoic acids, O-deacylation, and de-esterification gave the title gangliosides GM3 (11→13) and KDN-GM3 (14→16) in good yields. On the other hand, O-deacylation of 1 and subsequent de-esterification gave 2-azido-sphingosine containing-GM3 analogue 17, which was converted into lyso-GM3, in which no fatty acyl group was substituted at the sphingosine residue, by selective reduction of the azido group.  相似文献   

9.
9‐(3‐Deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2,6‐diaminopurine ( 6 ) was synthesized by an enzymatic transglycosylation of 2,6‐diaminopurine ( 2 ) with 3′‐deoxycytidine ( 1 ) as a donor of 3‐deoxy‐D ‐erythro‐pentofuranose moiety. This transformation comprises i) deamination of 1 to 3′‐deoxyuridine ( 3 ) under the action of whole cell (E. coli BM‐11) cytidine deaminase (CDase), ii) the phosphorolytic cleavage of 3 by uridine phosphorylase (UPase) giving rise to the formation of uracil ( 4 ) and 3‐deoxy‐α‐D ‐erythro‐pentofuranose‐1‐O‐phosphate ( 5 ), and iii) coupling of the latter with 2 catalyzed by whole cell (E. coli BMT‐4D/1A) purine nucleoside phosphorylase (PNPase). Deamination of 6 by adenosine deaminase (ADase) gave 3′‐deoxyguanosine ( 7 ). Treatment of 6 with NaNO2 afforded 9‐(3‐deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2‐amino‐6‐oxopurine (3′‐deoxyisoguanosine; 8 ). Schiemann reaction of 6 (HF/HBF4+NaNO2) gave 9‐(3‐deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2‐fluoroadenine ( 9 ).  相似文献   

10.
吴自成宁君  孔繁祚 《中国化学》2003,21(12):1655-1660
Lauryl glycoside of β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]α-D-Glcp-(1→3)-β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]α-D-Glcp-(1→3)-β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]β-D-Glcp was synthesized through 3 3 3 strategy. 3-O-Allyl-2,4,6-tri-O-benzoyl-β-D-glucopyranosyl-(1→3)- -[2, 3, 4, 6-tetra-O-benzoyl-β-D-glucopyranosyl-(1→6)-] 1,2-O-isopropylidene-α-D-glucofuranose was used as the key intermediate which was converted to the corresponding trisaccharide donor and acceptor readily.  相似文献   

11.
Synthesis of N-Methyl- and N,N-Dimethylmerucathine and of N-Methyl- and N,N--Dimethylpseudomerucathine Starting from L -Alanine Starting form L -alanine, N-methylmerucathine (= (3R,4S)-4-(methylamino)1-phenyl-1-penten-3-ol; (3R,4S,)- 6 ), N,N-dimethylmerucathine (= (3R,4S)-4-(dimethylamino)-1-phenyl-1-penten-3-ol; (3R,4S)- 9 ), N-methylpseudomerucathine (= (3S,4S)-4-(methylamino)-1-phenyl-1-penten-3-01; (3S,4S)-6), and N,N-dimethylpseudomerucathine (= (3S,4S)-4-(dimethylamino)-1-phenyl-1-penten-3-ol; (3S,4S)- 9 ) were synthesized. The four compounds were analyzed by HPLC and compared with a natural khat extract.  相似文献   

12.
4( R )-(6-Chloro-s-triazolo[4,3-b]pyridazinyl-3)-1,4-furanoses 10 and 11 , 5( R )-(6-chloro-s-triazolo[4,3-b]pyridazinyl-3)-1,5-pyranose 13 , and 2(S),3( R )-dihydro-5-(6-chloro-s-triazolo[4,3-b]pyridazinyl-3)-2,3-O-isopropylidenefuran ( 12 ) were prepared by cyclization of hydrazones 6–9 obtained from 6-chloro-3-hydrazinopyridazine ( 1 ) and aldofuranoses 2, 3 and 4 , and aldopyranose 5 .  相似文献   

13.
Four new triterpenoid saponins, named scheffarboside A – D ( 1 – 4 ), along with five known saponins were isolated from the stems of Schefflera arboricola. The structures of the four new saponins were determined as 3‐O‐(O‐β‐glucuronopyranosyl‐(1 → 3)‐O‐α‐rhamnopyranosyl‐(1 → 2)‐α‐arabinopyranosyl)oleanolic acid ( 1 ), 3‐O‐(O‐α‐arabinopyranosyl‐(1 → 4)‐O‐α‐arabinopyranosyl‐(1 → 3)‐O‐α‐rhamnopyranosyl‐(1 → 2)‐α‐arabinopyranosyl)oleanolic acid ( 2 ), 3‐O‐(O‐α‐arabinopyranosyl‐(1 → 4)‐O‐α‐arabinopyranosyl‐(1 → 3)‐O‐α‐rhamnopyranosyl‐(1 → 2)‐α‐arabinopyranosyl)hederagenin ( 3 ), 3‐O‐(O‐α‐arabinopyranosyl‐(1 → 4)‐O‐α‐arabinopyranosyl‐(1 → 3)‐O‐α‐rhamnopyranosyl‐(1 → 2)‐α‐arabinopyranosyl)oleanolic acid Oα‐rhamnopyranosyl‐(1 → 4)‐O‐β‐glucopyranosyl‐(1 → 6)‐β‐glucopyranosylester ( 4 ), respectively, on the basis of spectroscopic and chemical degradation methods.  相似文献   

14.
Abstract

2-Anilino-4,6-dimethoxy-1,3,5-triazine (13), 2-anilino-4,6-diethoxy-1,3,5-triazine (14), 2-(2′-nitoanilino) 4,6-dimethoxy-1,3,5-triazine (15) undergo alkyl rearrangement in the liquid-state, while 2-(4′-nito-anilino) 4,6-dimethoxy-1,3,5-triazine (16) undergoes methyl rearrangement in the solid-state. The crystal structure and thermal behavior of these compounds are described. 13 crystallizes in monoclinic P21/c space group, a = 11.030(4), b = 6.345(4), c = 16.315(4) Å, β = 90.76(3)°. The calculated density for Z = 4 is 1.351 Mg/m3. The number of unique reflections collected is 2092, and the final R = 0.0643 [I > 2σ(I)]. 14 crystallizes in triclinic P-1 space group, a = 7.700(2), b = 9.723(3), c = 10.154(3) Å, α = 78.78(3), β = 70.32(3), γ = 73.67(3)°. The calculated density for Z = 2 is 1.266 Mg/m3. The number of unique reflections collected is 2401, and the final R = 0.0561 [I > 2σ(I)]. 15 crystallizes in monoclinic P21/m space group, a = 11.020(3), b = 6.600(2), c = 8.409(3) Å, β = 99.72(3)°. The calculated density for Z = 2 is 1.527 Mg/m3. The number of unique reflections collected is 1153, and the final R = 0.0502 [I > 2σ(I)]. 16 crystallizes in monoclinic P21/c space group, a = 7.499(3), b = 21.846(5), c = 7.895(3) Å, β = 115.42(3)°. The calculated density for Z = 4 is 1.576 Mg/m3. The number of unique reflections collected is 2036, and the final R = 0.0757 [I > 2σ(I)].  相似文献   

15.
The orthothioborates Na3BS3, K3BS3 and Rb3BS3 were prepared from the metal sulfides, amorphous boron and sulfur in solid state reactions at temperatures between 923 and 973 K. In a systematic study on the structural cation influence on this type of ternary compounds, the crystal structures were determined by single crystal X‐ray diffraction experiments. Na3BS3 crystallizes in the monoclinic space group C2/c (No. 15) with a = 11.853(14) Å, b = 6.664(10) Å, c = 8.406(10) Å, β = 118.18(2)° and Z = 4. K3BS3 and Rb3BS3 are monoclinic, space group P21/c (No. 14) with a = 10.061(3) Å, b = 6.210(2) Å, c = 12.538(3) Å, β = 112.97(2) and a = 10.215(3) Å, b = 6.407(1) Å, c = 13.069(6) Å, β = 103.64(5)°, Z = 4. The potassium and rubidium compounds are not isotypic. All three compounds contain isolated [BS3]3– anions with boron in a trigonal‐planar coordination. The sodium cations in Na3BS3 are located between layers of orthothioborate anions, in the case of K3BS3 and Rb3BS3 stacks of [BS3]3– entities are connected via the corresponding cations. X‐ray powder patterns were measured and compared to calculated ones obtained from single crystal X‐ray structure determinations.  相似文献   

16.
A new oleane-type triterpene oligoglycoside, hederagenin 3-O-(3-O-acetyl-β-D-xylopyranosyl)-(1→3)-α-L-arabinopyranoside (2), together with four known compounds, hederagenin (1), hederagenin 3-O-(4-O-acetyl-α-L-arabinopyranosyl)-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside (3), hederagenin 3-O-α-L-arabinopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside (4), hederagenin 3-O-β-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→4)-β-D-xylopyranoside (5), was isolated from the hull of Nephelium lappaceum. All the isolates were obtained from the hull of rambutan for the first time.  相似文献   

17.
The reaction of Ph2PCl and PhPCl2 with bis(trimethylsilyl)sulfur diimide in the presence of GaCl3 and AlCl3 yields diadducts of the corresponding cyclodiphosph(V)azene: [Ph2PN]2·(GaCl3)2 ( 1 ), [Ph2PN]2·(AlCl3)2 ( 2 ), and [Ph(Cl)PN]2·(AlCl3)2 ( 3 ). This reaction is triggered by Lewis acids, which catalyse the (CH3)3Si‐Cl and S8 elimination. The structures of 1· 2 CH2Cl2, 2· 2 CH2Cl2 and 3 were determined by single crystal X‐ray studies ( 1 : triclinic, , a = 9.679(2) Å, b = 9.863(2) Å, c = 11.366(2) Å, α = 113.55(3)°; β = 99.59(3)°; γ = 106.67(3)°; V = 902.8(3) Å3, Z = 1; 2 : triclinic, , a = 9.639(2) Å, b = 9.804(2) Å, c = 11.321(2) Å, α = 113.71(3)°; β = 99.44(3)°; γ = 106.70(3)°; V = 889.3(3) Å3, Z = 1; 3 : orthorhombic, Pbca, a = 14.853(3) Å, b = 9.261(2) Å, c = 16.631(3) Å, V = 2287.7(8) Å3, Z = 4.  相似文献   

18.
Enantiomerically pure (3S)- 3a and - 3b , the olfactory active forms of 1-(2,2,6-trimethylcyclohexyl)hexan- 3-ol, components of the commercial woody odorant Timberol ®, are obtained by lipase-PS-mediated enantioselective acetylation of the allylic alcohols 6 and 7 and of the saturated alcohol 3 . These materials, as mixtures of diastereoisomers, provided (3R)-configured transformation products. However, whereas in the conversion of 6 and 7 there is no diastereoselection, 3 provided the acetate of (1′S,3R,6′R)- 3c much more rapidly than that of the diastereoisomer (1′R,3R,6′S)- 3d (Scheme 3). Inversion of the configuration at C(3) of the side chain of the olfactory inactive (3R)-materials obtained as acetates in the enzymic treatment of 6 , 7 , and 3 also provided, eventually, the desired olfactory active (3S)-products.  相似文献   

19.
Preparation of Enantiomerically Pure Derivatives of 3-Amino- and 3-Mercaptobutanoic Acid by SN2 Ring Opening of the β-Lactone and a 1,3-Dioxanone Derived from 3-Hydroxybutanoic Acid From (S)-4-methyloxetan-2-one ( 1 ), the β-butyrolactone readily available from the biopolymer ( R )-polyhydroxybutyrate (PHB) and various C, N, O and S nucleophiles, the following compounds are prepared:(s)-2-hydroxy-4-octanone ( 3 ), (R)-3-aminobutanoic acid ( 7 ) and its N-benzyl derivative 5 , (R)-3-azidobutanoic acid ( 6 ) (R)-3-mercaptobutanoic acid ( 10 ), (R)-3-(phenylthio)butanoic acid ( 8 ) and its sulfoxide 9 . The (6R)-2,6-dimethyl-2-ethoxy-1,3-dioxan-4-one ( 4 ) from (R)-3-hydroxybutanoic acid undergoes SN2 ring opening with benzylamine to give the N-benzyl derivative (ent- 5 ) of (S)-3-aminobutanoic acid in 30?40% yield.  相似文献   

20.
The bismuth tris(triorganosilanolates) [Bi(OSiR3)3] ( 1 , R = Me; 2 , R = Et; 3 , R = iPr) were prepared by reaction of R3SiOH with [Bi(OtBu)3]. Compound 1 crystallizes in the triclinic space group with Z = 2 and the lattice constants a = 10.323(1) Å, b = 13.805(1) Å, c = 21.096(1) Å and α = 91.871(4)°, β = 94.639(3)°, γ = 110.802(3)°. In the solid state compound 1 is a trimer as result of weak intermolecular bismuth‐oxygen interactions with Bi–O distances in the range 2.686(6)–3.227(3) Å. The coordination at the bismuth atoms Bi(1) and Bi(3) is best described as 3 + 2 coordination whereas Bi(2) shows a 3 + 3 coordination. The intramolecular Bi–O distances fall in the range 2.041(3)–2.119(3) Å. Compound 3 crystallizes in the orthorhombic space group Pbcm with Z = 4 and the lattice constants a = 7.201(1) Å, b = 23.367(5) Å and c = 20.893(1) Å, whereas the triethylsilyl‐derivative 2 is liquid. In contrast to [Bi(OSiMe3)3] ( 1 ) compound 3 is monomeric in the solid state, but shows similar intramolecular Bi–O distances in the range 1.998(2)–2.065(5) Å. The bismuth silanolates are highly soluble in common organic solvents and strongly moisture sensitive. Compound 1 shows the lowest thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号