首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural Chemistry of Phosphorus-containing Chains and Rings. 2. Crystal and Molecular Structure of the Diphosphaborirane (t-BuP)2BNEt2 The three-membered P2B-heterocycles 1,2-di-tert-butyl-3-diethylamino-1,2,3-diphosphaborirane, (t-BuP)2BNEt2, crystallizes triclinic in the space group P1 with a = 935.5 pm, b = 985.4 pm, c = 987.4 pm,α = 81.55°, β = 89.40°, γ =69.07°, and Z = 2 formula units. The main structural feature is a short B? N-bond length (138.2 pm) inside a plane P2BN-group. The endocyclic bond angles are 54.0° on phosphorus and 72.0° on boron. The (average) bond lengths are P? P = 222.5 pm, P? C = 189.5 pm, P? B = 189.3 pm, B? N = 138.2 pm, N? C = 147.2 pm, C? C = 152.6 pm, and C? H = 98 pm. The geometry of the substituents ethyl and tert-butyl is quite normal.  相似文献   

2.
Structural Chemistry of Phosphorus Containing Chains and Rings. 7. Molecular and Crystal Structure of the Diphosphagermetane (t-BuP)2(GePh2)2 The compound 1,2-di-tert-butyl-3,3,4,4-tetraphenyl-diphospha-3,4-digerma-cyclobutan, (t-BuP)2(GePh2)2, crystallizes monoclinically in the space group P21/c with a = 996.8 pm, b = 1337.3 pm, c = 2403.4 pm, β = 92.66° and Z = 4 formula units. The main structural feature is a non-planar four-membered ring. The (average) bond lengths are d(Ge? Ge) = 242.1 pm, d(Ge? P) = 234.0 pm, d(P? P) = 221.6 pm, d(Ge? C) = 194.9 pm, d(P? C) = 188.tyl4 pm, d(C? C)Ph = 136.l5 pm, d(C? C)t-Bu = 151.8 pm, d(C? H)Ph = 91 pm, d(C? H)t-Bu ? 95 pm. The geometry of the substituents phenyl and tert-butyl is quite normal.  相似文献   

3.
Structural Chemistry of Phosphorus Containing Chains and Rings. 11. Crystal and Molecular Structures of the Two Stereoisomers of Tetraphospha-silaspiro[2.2]pentane (PBut)2Si(PBut)2 The spirocyclic compound 1,2,4,5-tetra-tert-butyl-1,2,4,5-tetraphospha-3-silaspiro[2.2]pentane exists in tow diastereomers of point symmetry 4 and 2. The isomer with symmetry 4 even in the solid crystallizes tetragonally in I41/a with a = 1247.0, c = 1505.5 pm and Z = 4. The isomer of fairly exact symmetry 2 crystallizes triclinically in P1 with a = 612.8, b = 996.3, c = 1017.2 pm, α = 75.63, β = 72.38, γ = 88.71° and Z = 1. In this disordered structure the surroundings of Si is slightly distorted due to the influence of the substituents. The (average) bond lengths are (4 , 2): d(Si? P) = 220.09(9), 221.5(5); d(P? P) = 225.5(2), 224.2(5); d(P? C) = 189.4(3), 190(2); d(C? C) = 151.4(4), 152(3) pm. The geometry of the substituents in both isomers is quite normal.  相似文献   

4.
Contributions to the Chemistry of Phosphorus. 101 Synthesis and Properties of Diphosphaboriranes (t-BuP)2BNR2 and (t-BuP)2BNR1R2 The reaction of K(t-Bu)P? P(t-Bu)K with diorganylaminodichloroboranes under suitable conditions leads to the new 1,2-di-tert-butyl-3-diorganylamino-1,2,3-diphosphaboriranes (-1,2-diphospha-3-boracyclopropanes) (t-BuP)2BNR2 ( 2 , 7 ) and (t-BuP)2BNR1R2 ( 3 — 6 ), respectively. The P2B three-membered heterocycles 2 — 5 can be isolated in good yields. They are relatively stable against dimerization to the corresponding phosphorus boron six-membered ring compounds with opposite boron atoms. The rate of dimerization depends on steric and electronic influences of the substituents at the three-membered ring. All NMR spectroscopic results are only consistent with a structure in which the B and N atoms show planar coordination and are connected by a partial double bond.  相似文献   

5.
Contributions to the Chemistry of Phosphorus. 106. Synthesis and Properties of the Diphosphacyclopropane (t-BuP)2CHMe The new 1,2-di-tert-butyl-3-methyl-1,2-diphosphacyclopropane (1,2-di-tert-butyl-3-methyl-diphosphirane), (t-BuP)2CHMe ( 1 ), is obtained by reacting K(t-Bu)P? P(t-Bu)K with 1,1-dichloroethane under suitable conditions. 1 can be isolated by high vacuum distillation and is stable for months when stored under inert gas at room temperature. Particularly, no dimerization to the corresponding 1,2,4,5-tetraphosphacyclohexane takes place. The NMR parameters indicate an increase of the exocyclic bond angles compared to (t-BuP)2CH2. The signs of all CP coupling constants have been determined by spin tickling experiments. The 2J(CCP)-coupling of the methyl group at the ring carbon depends strongly on the dihedral angle.  相似文献   

6.
The Crystal Structure of tBu2P? P?P(Br)tBu2 tBu2P? P?P(Br)tBu2 1 crystallizes in the monoclinic space group P21/c with a = 2 888.9(3), b = 972.16(10), c = 1 534.04(14) pm, β = 105.129(8)° and 8 formula units in the unit cell. The two independent P3-units in 1 form angles of 105.77° or 105.98°, resp. One P? P distance (220,4 pm) corresponds to a single bond, the other one (207.9 pm) to a double bond.  相似文献   

7.
Contributions to the Chemistry of Phosphorus. 123. Synthesis and Properties of the Diphosphagermiranes (t-BuP)2GePh2 and (t-BuP)2GeEt2 The first three-membered P2Ge heterocycles, 1,2-di-tert-butyl-3, 3-diphenyl-1, 2, 3-diphosphagermirane, (t-BuP)2GePh2 (1) , and 1, 2-di-tert-butyl-3, 3-diethyl-1, 2, 3-diphosphagermirane, (t-BuP)2GeEt2 (2) , were synthesized by [2+1] cyclocondensation reactions of K(t-Bu)P—P(t-Bu)K with diphenylgermanium dichloride and diethylgermanium dichloride, respectively. The four-, five-, and six-membered cyclogermaphosphanes (t-BuP)2(GePh2)2 (3) , (t-BuP)3GeR2 ( 6 R = Ph; 7 R = Et), (t-BuP)4GePh2 (5) and (t-BuP)4(GePh2)2 (4) as well as (t-BuP)4 are formed as by-products. The diphosphagermiranes 1 and 2 could be isolated in 93 and 100% purity, respectively, and were unambiguously characterized as compounds with a cyclic P2Ge skeleton. The 31P-NMR parameters of the cyclogermaphosphanes 3—7 are reported.  相似文献   

8.
Contributions to the Chemistry of Phosphorus. 159. On the Reaction of the Diphosphaborirane (t-BuP)2BN(i-Pr)2 with Potassium or Potassium Naphthalenide The reaction of (t-BuP)2BN(i-Pr)2 with potassium or K-naphthalenide in tetrahydrofuran leads to K(t-Bu)P? ;BN(i-Pr)2? P(t-Bu)K ( 1 ) via P? ;P bond cleavage of the three-membered ring skeleton. Above ? 78°C 1 changes into the asymmetric compound K(t-Bu)P? ;P(t-Bu)? BHN(i-Pr)2 ( 2 ). In dimethoxyethane additionally the monometallated diphosphaborirane K(t-Bu)P2BN(i-Pr)2 ( 3 ) is formed. 1 and 3 , which could be isolated free from other phosphorus containing compounds, as well as the corresponding silylphosphanes Me3Si(t-Bu)P? ;BN(i-Pr)2? ;P(t-Bu)SiMe 3 ( 4 ) and Me3Si(t-Bu)P2BN(i-Pr)2 ( 5 ) were characterized by NMR spectroscopy. Protolysis of 3 or 5 leads to a decomposition of the three-membered ring skeleton with formation of H(t-Bu)P? ;PH2.  相似文献   

9.
Contributions to the Chemistry of Phosphorus. 129. Synthesis and Properties of the Phospha-germa-cyclobutanes (t-BuP)2(GePh2)2 and (t-BuP)3GePh2 The phospha-germa-cyclobutanes 1,2-di-tert-butyl-3,3,4,4-tetraphenyl-1,2-diphospha-3,4-digerma-cyclob utane, (t-BuP)2(GePh2)2 ( 1 ), and 1,2,3-tri-tert-butyl-4,4-diphenyl-1,2,3-tri-phospha-4-germa-cyclobutan e, (t-BuP)3GePh2 ( 2 ), are obtained as main-products of the cyclocondensation of K(t-Bu)P? P(t-Bu)K with Ph2GeCl2 under certain reaction conditions. 1 and 2 could be isolated in the pure state and were clearly characterized as the first four-membered P2Ge2 and P3Ge heterocycles, respectively.  相似文献   

10.
Contributions to the Chemistry of Phosphorus. 134. On the Triphosphanes H(t-BuP)3H' Li(t-BuP)3Li, and Me3Si(t-BuP)3SiMe3 The reaction of 1,3-diiodo-1,2,3-tri-tert-butyltriphosphane, I(t-BuP)3I, with lithium aluminium hydride leads to 1,2,3-tri-tert-butyltriphosphane, H(t-BuP)3H ( 1 ). 1 reacts with n-butyllithium to 1,3-dilithium-1,2,3-tri-tert-butyltriphosphide, Li(t-BuP)3Li ( 2 ), which reacts further with trimethylchlorosilane yielding 1,3-bis(trimethylsilyl)-1,2,3-tri-tert-butyltriphosphane, Me3Si(t-BuP)3SiMe3 ( 3 ). The triphosphanes 1, 2 and 3 could be isolated in a pure state. In solution 1 forms the threo, threo and the threo,erythro configurated diastereomers 1a and 1b in a ratio of about 2:1. 3 predominantly exists in form of the threo,erythro configurated diastereomer 3b by steric reasons.  相似文献   

11.
Synthesis and Structure of Lithium Tris(trimethylsilyl)silanide · 1,5 DME Lithium tris(trimethylsilyl)silanide · 1,5 DME 2a synthesized from tetrakis(trimethylsilyl)silane 1 [6] and methyllithium in 1,2-dimethoxyethane , crystallizes in the monoclinic space group P21/c with following dimensions of the unit cell determined at a temperature of measurement of ?120 ± 2°C: a = 1 072.9(3); b = 1 408.3(4); c = 1 775.1(5) pm; β = 107.74(2)°; 4 formula units (Z = 2). An X-ray structure determination (Rw = 0.040) shows the compound to be built up from two [lithium tris(trimethylsilyl)silanide] moieties which are connected via a bridging DME molecule. Two remaining sites of each four-coordinate lithium atom are occupied by a chelating DME ligand. The Li? Si distance of 263 pm is considerably longer than the sum of covalent radii; further characteristic mean bond lengths and angles are: Si? Si 234, Li? O 200, O? C 144, O?O (biß) 264 pm; Si? Si? Si 104°, Li? Si? Si 107° to 126°; O? Li? O (inside the chelate ring) 83°. Unfortunately, di(tert-butyl)bis(trimethylsilyl)silane 17 prepared from di(tert-butyl)dichlorsilane 15 , chlorotrimethylsilane and lithium, does not react with alkyllithium compounds to give the analogous silanide.  相似文献   

12.
Contributions to the Chemistry of Phosphorus. 104. Synthesis and Properties of 1,3-Dihalogen-1,2,3-tri-tert-butyltriphosphanes (t-BuP)3X2, X = Cl, Br, I The halogenating ring-cleavage of tri-tert-butyl-cyclotriphosphane, (t-BuP)3, by iodine, bromine or phosphorus(V)bromide as well as phosphorus(V)chloride leads to the first 1,3-dihalogen-1,2,3-triorganyltriphosphanes (t-BuP)3I2 ( 1 ), (t-BuP)3Br2 ( 2 ), and (t-BuP)3Cl2 ( 3 ). The 1,2-dihalogen-1,2-di-tert-butyldiphosphanes (t-BuP)2I2 ( 4 ), (t-BuP)2Br2 ( 6 ), and (t-BuP)2Cl2 ( 9 ) as well as the dihalogen-tert-butylphosphanes t-BuPI2 ( 5 ), t-BuPBr2 ( 7 ), and t-BuPCl2 ( 10 ) are formed as by-products. Moreover, the reaction of (t-BuP)3 with PBr5 leads to 1-bromo-2,3,4-tri-tert-butyl-cyclo-tetraphosphane, (t-BuP)3(PBr) ( 8 ). The compounds 1 and 3 could be isolated in a pure state and were characterized in all details. 3 is a reMarkably stable open-chain triphosphane.  相似文献   

13.
Contributions to the Chemistry of Phosphorus. 144. Synthesis and Properties of the Hexaphospha-3-germaspiro[2.4]heptane (t-BuP)2Ge(t-BuP)4 The cyclocondensation of K(t-Bu)P? P(t-Bu)K with germanium tetrachloride in the molar ratio of 2:1 yields the novel spirocyclic compound 1,2,4,5,6,7-hexa-tert-butyl-1,2,4,5,6,7-hexaphospha-3-germaspiro[2.4]heptane, (t-BuP)2Ge(t-BuP)4 ( 1 ). Besides considerable amounts of (t-BuP)4 are formed and occasionally some (t-BuP)3 can be found. 1 could be isolated in the pure state and has been NMR-spectroscopically characterized as a spirocyclic compound with a P2GeP4 skeleton.  相似文献   

14.
Contributions to the Chemistry of Phosphorus. 152. Functionalized Cyclotriphosphanes of the Type (t-BuP)2PX (X = K, SiMe3, SnMe3, Cl, Br, PCl2, P(t-Bu)Cl, P(t-Bu)I) Functionalized cyclotriphosphanes of the type (t-BuP)2PX with electropositive or electronegative substituents X have been prepared on various synthetic routes: KP(t-BuP)2 ( 1 ) can be obtained in 50–55 per cent purity by reacting (t-BuP)4 or (t-BuP)3 with potassium. Reaction of 1 with Me3SiCl or Me3SnCl leads to the cyclotriphosphanes (t-BuP)2PSiMe3 ( 2 ) and (t-BuP)2PSnMe3 ( 3 ), respectively; the cyclocondensation of Cl(t-Bu)P? P(t-Bu)Cl with P(SnMe3)3, however, is more convenient for the preparation of 3 . In a similar way the halogenated compounds (t-BuP)2PCl ( 4 ) and (t-BuP)2PBr ( 5 ) can be obtained from Me3Sn(t-Bu)P? P(t-Bu)SnMe3 ( 6 ) and PX3 (X = Cl, Br). The phosphino-substituted cyclotriphosphanes (t-BuP)2P? PCl2 ( 7 ), (t-BuP)2P? P(t-Bu)Cl ( 8 ), and (t-BuP)2P? P(t-Bu)I ( 9 ) are accessible by the reaction of 3 with PCl3 and t-BuPX2 (X = Cl, I), respectively. 2–9 could be obtained free from phosphorus-containing by-products and were 31P-NMR spectroscopically characterized as compounds with a cyclic P3 skeleton.  相似文献   

15.
Contributions to the Chemistry of Phosphorus. 160. About the Ring Cleavage of the Phosphorus Three-Membered Heterocycles (t-BuP)2CMe2 and (t-BuP)2N(i-Pr) with Potassium or K-Naphthalenide The reaction of (t-BuP)2CMe2 with potassium or K-naphthalenide in tetrahydrofuran or 1,2-dimethoxyethane mainly leads to the symmetric phosphide K(t-Bu)P? ;CMe2? ;P(t-Bu)K ( 1 ) via P? ;P-bond cleavage. Above —78°C 1 decomposes into the monophosphides KHP(t-Bu) ( 3 ) and KP(t-Bu)(i-Pr) ( 4 ). In the case of (t-BuP)2N(i-Pr) under analogous conditions essentially the P? ;N-bond is split up yielding the phosphide K(t-Bu)P? ;P(t-Bu)? ;NH(i-Pr) ( 5 ), which is stable at room temperature. Contrary to (t-BuP)2BN(i-Pr)2 cyclic phosphides are not formed. The different reactive behavior in the metalation of phosphorus three-membered heterocycles of the type (PR1)2ER (E = hetero atom) is discussed.  相似文献   

16.
Contributions to the Chemistry of Phosphorus. 224. On the Thermolysis of 1,2-Di-tert-butyldiphosphane, 1,2,3-Tri-tert-butyltriphosphane, and Tetra-tert-butylcyclotetraphosphane On disproportionation of 1,2-di-tert-butyldiphosphane, H(t-Bu)P? P(t-Bu)H (1) , 1,2,3-tri-tert-butyltriphosphane, H2(t-BuP)3 (2) , is formed which reacts further at temperatures above 100°C to give 1-(tert-butylphosphino)-2,3,4-tri-tert-butylcyclotetraphosphan, P5(t-Bu)4H (4) . Compound 4 reacts with 1 or 2 with lengthening of the P-sidechain to furnish the corresponding 1-(1,2-di-tert-butyldiphosphino)-2,3,4-tri-tert-butylcyclotetraphosphane, P6(t-Bu)5H (5) . At temperatures above 170°C, 5 disproportionates into the tetra-tert-butylcyclotetraphosphane, (t-BuP)4 (3) which is stable up to about 200°C, and the bicyclo[3.1.0]hexaphosphane P6(t-Bu)4 from which the polycyclophosphanes P9(t-Bu)3 and P8(t-Bu)6 arise during the further course of the thermolysis. These products are finally converted through even more phosphorus-rich and more highly condensed t-butylcyclophosphanes into elemental phosphorus. In each reaction step, varying amounts of the monophosphane derivatives t-BuPH2, (t-Bu)2PH, and (t-Bu)3P are formed. The proposed course of the reaction is further substantiated by the pyrolysis products of pure 2 and 3 .  相似文献   

17.
Element-Element Bonds. I. Syntheses and Structure of Tetra(tert-butyl)tetrarsetane and of Tetra(tert-butyl)tetrastibetane Dilithium (tert-butyl)arsenide reacts with (tert-butyl)dichloroarsine to give tetra-(tert-butyl)tetrarsetane 1 ; homologous tetra(tert-butyl)tetrastibetane 2 is formed by reduction of (tert-butyl)dichlorostibane with magnesium. The isotypic compounds 1/2 crystallize in the monoclinic space group P21/c with Z = 4. The dimensions of the unit cells determined at ?45 ± 5°C are: a = 957.4(8)/1 000.2(3); b = 1 399.1(14)/1 423.9(4); c = 1 697.4(9)/1 749.8(7) pm; β = 96.02(6)/96.77(3)°. As shown by low temperature X-ray structure determinations (3 531/3 232 symmetry independent reflections; Rg = 4.0/4.6%) the four membered rings E4 (E = As or Sb) are folded; in all-trans configuration the bulky organic substituents occupy pseudo-equatorial positions. Characteristic averaged bond distances and angles are: E? E 244/282; E? C 202/221 pm; ? E? E? E 86/85° ? E? E? C 101/99°. The dihedral angels of the bisphenoides built up by the atoms of the rings are found to be 139/133°.  相似文献   

18.
Acyl- and Alkylidenephosphines. XXIII. Synthesis and Structure of [Bis(trimethylsilylsulfano)methylidene]phosphines Analogous to the phenyl derivative 1a [2] tert-butyl- 1b , mesityl- 1c and methylbis-(trimethylsilyl)phosphine 1 d react with carbon disulfide to give the corresponding [bis(trimethylsilylsulfano)methylidene]phosphines 4 . Only in case of the mesitylphosphine 1 c the intermediate compounds 2 and 3 could be detected by n.m.r. spectroscopic methods; thermally unstable [bis(trimethylsilylsulfano)methylidene]methylphosphine 4 d dimerizes rapidly [1]. [Bis(trimethylsilylsulfano)methylidene]phenylphosphine 4 a crystallizes in the monoclinic centrosymmetric space group P21/c with following dimensions of the unit cell determined at ?95 ± 3°C: a = 1386.4(8); b = 1036.0(7); c = 1281.7(8) pm; ß = 101.23(4)°; Z = 4. An X-ray structure determination (R = 0.032) proves the constitution of this compound as already derived from its nmr spectra. Characteristic bond lengths and angles are: P?C 170; P? C(phenyl) 183; C? S 176; S? Si 219 pm; C? P?C 107; P?C? S 124 and 120; S? C? S 116 and C? S? Si 111°.  相似文献   

19.
Silanediyldiphosphinite tBu2Si(OPPh2)2 1 has been synthesised. 1 reacts with the norbornadiene complexes C7H8M(CO)4 (M = Cr, Mo, W) to give six-membered chelate rings of the type cis-M(CO)4[tBu2Si(OPPh2)2] 2–4 . The crystal structures of the chromium and molybdenum complexes cis-Cr(CO)4[tBu2Si(OPPh2)2] 2 and cis-Mo(CO)4[tBu2Si(OPPh2)2] 3 have been determined. Both complexes crystallise in the triclinic system (space group P1 ) with unit cell parameters: ( 2 ) a = 1 093(3) pm, b = 1 477(5) pm and c = 1 542(5) pm; α = 108.4(2)°, b? = 103.87(11)° and b? = 104.57(10)°; U = 2.143(12) nm3; Z = 2; ( 3 ) a = 1 097.8(2) pm, b = 1 483.7(2) pm and c = 1 554.3(2) pm; α = 108.10(1)°, b? = 103.956(6)° and γ = 104.213(7)°; U = 2.1899(6) nm3; Z = 2. Both 2 and 3 consist of discrete, slightly distorted, octahedral monomers in which the six-membered chelate rings are essentially planar. In contrast, the conformations of the chelate rings found in crystal structures of analogous complexes vary from twist-boat to “chaise longue”.  相似文献   

20.
Formation of Organosilicon Compounds. 112. The Influence of Reaction Conditions on the Reaction of (Cl3Si)2CCl2 with Silicon. The Structures of 2,2,3,3,5,5,6,6-Octachloro-1,4-bis(trichlorosilyl)-2,3,5,6-tetrasilabicyclo[2.1.1]-hexane and 1,1,3,4,6,6-Hexakis(trichlorosilyl)hexatetraene While reactions of (Cl3Si)2CCl2 1 with Si(Cu) in a fluid bed at 320°C exclusively yield products by silylation of the CCl2 group in 1 does the reaction in a stirred bed preferrably give rize to chlorosilanes containing C? C double and triple bonds. Compounds 5, 6, 7, 8 and 9 in Tab. 1 belong to the first group, whereas 3 and 4 belong to the second one. The reaction of 1 with elemental copper under dehalogenation at carbon produces 3, 4 and 11 . In the reaction of 1 with CaSi2 no additional Si? C bonds are formed, exclusively chlorosilanes with multiple C? C bonds as 3, 4 and 10 were found besides of SiCl4. The bicyclo[2.1.1]hexane 6 (Tab. 1) crystallizes monoclinically in the space group C2/c (no. 15) with a = 1557.8, b = 857.4, c = 1727.3 pm, β = 104.34° und Z = 4 molecules per unit cell; the hexatetraene 10 (Tab. 1) crystallizes monoclinically in the space group C2/m (no. 12) with a = 1189.6, b = 1433.8, c = 983.5 pm, β = 98.75° pm, and Z = 2 molecules per unit cell. The skeleton of 6 is a system of high bond stress with 2-C2 symmetry. The strongly folded (138.8°) four-membered ring (sum of angles = 344.2°) and the presence of both a Si? Si bond length of 238.2 pm and a Si? Si non-bonding distance of 255.1 pm are remarkable aspects of this feature. The mean bond lengths in the bicyclic compound were found to be d(Si? C) = 190.9 pm and d(Si? C) = 185.1 pm for exo- and endocyclic bonds, respectively. The skeleton of 10 is of the symmetry 2/m-C2h. The six-membered chain is plane. The central C? C single bond length and the mean distance of the cumulated double bonds are 148.6 pm and 130.5 pm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号