首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of low molecular weight, thermotropic poly(2-alkyl-1,4-phenylene terephthalate)s was prepared by the solution polycondensation reaction of terephthaloyl chloride and alkylhydroquinones containing n-alkyl substituents of increasing size from methyl to dodecyl. Samples of the low molecular weight polymers so obtained were also further polycondensed in the solid state to obtain high molecular weight polymers. The liquid crystalline phase behaviors and textures were determined, and the effects of polymer structure and molecular weight on these properties are discussed. All of the polymers obtained formed thermotropic, nematic mesophases, which were less stable for the lower molecular weight polymers, as expected, than were the mesophases formed by the higher molecular weight polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Anionic polymerizations of three 1,3‐butadiene derivatives containing different N,N‐dialkyl amide functions, N,N‐diisopropylamide (DiPA), piperidineamide (PiA), and cis‐2,6‐dimethylpiperidineamide (DMPA) were performed under various conditions, and their polymerization behavior was compared with that of N,N‐diethylamide analogue (DEA), which was previously reported. When polymerization of DiPA was performed at ?78 °C with potassium counter ion, only trace amounts of oligomers were formed, whereas polymers with a narrow molecular weight distribution were obtained in moderate yield when DiPA was polymerized at 0 °C in the presence of LiCl. Decrease in molecular weight and broadening of molecular weight distribution were observed when polymerization was performed at a higher temperature of 20 °C, presumably because of the effect of ceiling temperature. In the case of DMPA, no polymer was formed at 0 °C and polymers with relatively broad molecular weight distributions (Mw/Mn = 1.2) were obtained at 20 °C. The polymerization rate of PiA was much faster than that of the other monomers, and poly(PiA) was obtained in high yield even at ?78 °C in 24 h. The microstructure of the resulting polymers were exclusively 1,4‐ for poly(DMPA), whereas 20–30% of the 1,2‐structure was contained in poly(DiPA) and poly(PiA). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3714–3721, 2010  相似文献   

3.
Novel polypyrazolinones with inherent viscosities ranging from 0.12 to 0.44 dL/g were prepared by the Michael-type nucleophilic addition-cyclization of various dihydrazines with 3,3′-(1,3- or 1,4-phenylene)bis(ethyl propynoate) (1,3- or 1,4-PEP) and 3,3′-(1,4-phenylene)bis(phenyl propynoate) (1,4-PPhP) in N-methylpyrrolidone (NMP) solution at 25–110°C. The polymers exhibited moderate thermal stability with initial weight loss in air about 200°C and in nitrogen about 300°C (TGA). No apparent Tg′s were observed by DSC analysis. The synthesis and characterization of the polypyrazolinones is discussed.  相似文献   

4.
Two new types of p-xylene bis-sulfonium chloride monomers were prepared from cycloalkylene sulfides. The polymerization characteristics of these monomers to form poly(p-xylene sulfonium chlorides), and the thermal elimination reactions of their polymers to poly(p-phenylene vinylene), were compared with those of two monomers prepared from dialkyl sulfides. The cycloalkylene sulfonium chloride monomer polymerized to higher yields and to higher molecular weight polymers, which showed more efficient elimination reactions.  相似文献   

5.
trans‐1,4‐Cyclohexylene ring containing acid chloride monomers were incorporated into poly(arylene ether sulfone) (PAES) backbones to study their effect on mechanical and thermal properties. The trans‐1,4‐cyclohexylene ring containing acid chloride monomers were synthesized and characterized by NMR and high‐resolution mass spectrum. trans‐1,4‐Cyclohexylene containing PAESs were synthesized from the acid chloride monomers and hydroxyl terminated polysulfone oligomers with a pseudo‐interfacial method and a solution method. These PAESs, with trans‐1,4‐cyclohexylene ring containing ester linkages, were fully characterized by NMR, thermogravimetric analysis, differential scanning calorimetry (DSC), size exclusion chromatography, and dynamic mechanical analysis (DMA). The tensile properties were also evaluated. The polymers made with the pseudo‐interfacial method had relatively low molecular weights when compared to the solution method where much higher molecular weight polymers were obtained. Crystallinity was promoted in the low molecular weight biphenol‐based PAES samples with the pseudo‐interfacial method. The crystallinity was confirmed by both the DSC and the wide angle X‐ray diffraction results. The tensile test results of the high molecular weight polymers suggested that incorporation of the trans‐1,4‐cyclohexylene ring containing linkage slightly improved the ultimate elongations while maintaining the Young's moduli. The trans‐1,4‐cyclohexylene ring containing PAESs also showed higher sub‐Tg relaxations in DMA when compared with their terephthaloyl containing analog. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Poly(2,5-dimethoxy-1,4-phenylene) was prepared by oxidative polymerization of p-dimethoxybenzene with aluminum chloride and copper(II) chloride in nitrobenzene under reduced pressure. The polymers obtained were soluble in sulfuric acid and fusible at 320°C. The intrinsic viscosity of the polymer was ca. 0.07 in sulfuric acid. Demethylation of methoxy groups did not occur during the polymerization.  相似文献   

7.
Poly[N,N′-(sulfo-phenylene)phthalamid]es and poly[N,N′-(sulfo-p-phenylene)pyromellitimide] were prepared in water-soluble form and were found to have unique solution properties, similar in some respects to xanthan. The polymer most investigated, poly[N,N′-(sulfo-p-phenylene)terephthalamide] (PPT-S), is produced as the dimethylacetamide (DMAC) salt by the solution polymerization of 2,5-diaminobenzenesulfonic acid with terephthaloyl chloride in DMAC containing LiCl. The isolated polymer requires heating in water to dissolve; the resulting cooled solutions are viscous or gels at concentrations as low as 0.4%. They are highly birefringent, exhibit circular dichroism properties, and are viscosity-sensitive to salt. Solutions of this polymer mixed with those of guar or hydroxyethyl cellulose give significantly enhanced viscosity. The polymer is relatively low molecular weight, ca. 5000 estimated from viscosity data. Some meta and para isomeric analogs of PPT-S were prepared; these polymers have similar properties except they are more soluble in water, and higher concentrations are required to obtain significant viscosity. Poly[N,N′-(sulfo-p-phenylene) pyromellitimide] (PIM-S) was prepared similarly from 2,5-diaminobenzenesulfonic acid and pyromellitic dianhydride. Its aqueous solution properties are similar to those of PPT-S. It appears that these relatively low-molecular-weight rigid-chain polymers associate in water to form a network that results in viscous solutions at low concentrations.  相似文献   

8.
The oxidative polymerization of aryl sulfoxides provides a novel polysulfo-nium compound, poly(methylsulfonio-1,4-phenylenethio-1,4-phenylene cation) in quantita-tive yield. The polymerization proceeds efficiently in an acidic solution under atmosphericconditions. Oxygen, chemical and electrochemical oxidations are available. Vanadyl acety-lacetonate and cerium ammonium nitrate act as an effective catalyst for the oxygen ox-idative polymerization. The polymerization mechanism involves multielectron oxidation ofthe sulfides followed by successive electrophilic substitution. The resulting polyarylenesul-fonium cations are useful as a soluble precursor for the synthesis of high molecular weight(M_w>10~5) poly(thio arylne)s.  相似文献   

9.
Two ether-sulfone-dicarboxylic acids, 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]dibenzoic acid (Me- III ) and 4,4′-[sulfonylbis(1,4-phenylene)dioxy]-dibenzoic acid ( III ), were prepared by the fluorodisplacement of 4,4′-sulfonylbis(2,6-dimethylphenol) and 4,4′-sulfonyldiphenol with p-fluorobenzonitrile, and subsequent alkaline hydrolysis of intermediate dinitriles. Using triphenyl phosphite (TPP) and pyridine as condensing agents, aromatic polyamides containing ether and sulfone links were prepared by the direct polycondensation of the dicarboxylic acids with various aromatic diamines in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The inherent viscosities of the resulting polymers were above 0.4 dL/g and up to 1.01 dL/g. Most of the polyamides were readily soluble in polar solvents such as NMP, N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), and afforded tough and transparent films by solution-casting. Most of the polymers showed distinct glass transition on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 212–272°C. The methyl-substituted polyamides showed slightly higher Tgs than the corresponding unsubstituted ones. The results of the thermogravimetry analysis (TGA) revealed that all the polyamides showed no significant weight loss before 400°C, and the methyl-substituted polymers showed lower initial decomposition temperatures than the unsubstituted ones. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2421–2429, 1997  相似文献   

10.
Three samples of poly{2,2′-[N,N′-bis(1,4-phenylene)benzophenone-3,3′,4,4′-tetracarboxylimide-6,6′-bis(3-phenyl-quinoxaline)]} (PPIQ), were prepared, differing in molecular weights and polymer chain endings. Their thermal degradation in vacuo and in air was determined by isothermal weight loss measurements. As in the case of poly-[2,2′-(1,4-phenylene)-6,6′-bis(3-phenylquinoxaline)] (PPQ), the temperature coefficients of thermal degradation in air were independent of molecular weight. However, in contrast, the temperature coefficients were independent of the type of polymer endgroups. It is, therefore, concluded that, contrary to amino-terminated PPQ's, polymer chain-end unzipping of PPIQ is of minor importance during thermal-oxidative degradation.  相似文献   

11.
The low-temperature solution polycondensation reaction between 1,4-bis-(2′-hydroxy-ethoxy)benzene and adipyl chloride has been studied in N,N-dimethylacetamide. The effect of temperature, concentration, and reaction time on the percent yield and product viscosity has been determined. Optimum conditions were established for the preparation of high molecular weight products and then applied to the synthesis of novel tetracyanoquinodimethane polyesters. Products were characterized by gel permeation chromatography.  相似文献   

12.
Novel poly(N-oxyimide)s (PNOI) were synthesized by the room temperature polycondensation of N,N′-dihydroxypyromellitimide (I) with dichloro compounds in N,N-dimethylformamide (DMF) in the presence of triethylamine both as base as well as catalyst. The dichloro compounds used were 1,4-bis(chloromethyl)-2,5-dimethylbenzene (II), 1,5-bis(chloromethyl)-2,4-dimethylbenzene (III), 1,4-bis(chloromethyl)-2,5-dimethoxybenzene (IV) and 1,4-dichlorobut-2-yne (V). Polymer synthesis, characterization, and properties such as density, viscosity, solubility, crystallinity, and thermal stability were described. Two model compounds, viz. (i) MNOI-1 from N-hydroxyphthalimide and a dichloro compound (III), (ii) MNOI-2 from I and benzyl chloride were also synthesized to confirm the formation of polymers. The polymers thus obtained had high intrinsic viscosities in the range 1.09–1.18 dl/g. The thermal decomposition of the polymers started around 260°C with 20–25% decomposition and about 50% weight loss was observed at 400°C.  相似文献   

13.
The synthesis and polymerizability of imine C?N monomers is surveyed. The investigated imines were either far more reactive than similarly substituted C?C or C?O monomers, or too stable to polymerize. Imines with electron‐attracting substituents on N favor polymerization by anionic mechanism, but led only to low molecular weight polymers. Imines with a donor substituent on N, such as N‐arylmethyleneimines, polymerized by cationic or anionic mechanism. 1‐ and 2‐Aza‐1,3‐butadienes were also rather unstable and polymerized to oligomers. The symmetrically substituted 2,3‐diaza‐1,3‐butadienes could be purified and polymerized successfully using anionic initiators, resulting in both 1,4‐ and 1,2‐structures in the polymer backbone, depending on the substituents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
The effects of incorporating a p-phenylene- (or m-phenylene)-1,3,4-oxadiazole fragment into the backbone of poly[1,4-phenylene(diphenylsilyl)-1,4-phenylene-2,5-(1,3,4-oxadiazole)], which was developed by the authors, was investigated. Bis[(p-carbohydrazidophenyl)]diphenylsilane was copolymerized with dipentachlorophenyl terephthalate or isophthalate to produce the prepolymers poly[N-(p-diphenylsilylbenzoyl)-NN″-(terephthaloyl)-N″′-(p-benzoyl)dihydrazide] and poly[N-(p-diphenylsilylbenzoyl)-N′,-N″-(isophthaloyl)-N″′-p-(benzoyl) dihydrazide], respectively. The polyhydrazides were converted by thermal dehydration into poly[1,4-phenylene(diphenylsilyl)-1,4-phenylene-(1,3,4-oxadiazole-2,5-diyl)-1,4-phenylene-2,5-(1,3,4-oxadiazole)] and poly[1,4-phenyl-ene(diphenylsilyl)-1,4-phenylene-(1,3,4-oxadiazole-2,5-diyl)-1,3,4-(oxadiazole)]. The new polymers were soluble in organic solvents. Films cast from these solutions exhibited good adhesion to glass and metal surfaces. Thermal analysis showed that the heat stability of all these polymers was about the same and that they were resistant to decomposition when heated in air to about 400°C. The results also indicated that these polymers were somewhat less heat-resistant than samples of poly-[1,4-phenylene(diphenylsilyl)-1,4-phenylene-2,5-]1,3,4-(oxadiazole) synthesized from bis(p-carbohydrazidophenyl)diphenylsilane and bis-(p-carbopentachlorophenoxy-phenyl)diphenylsilane.  相似文献   

15.
2,3,4,5,6-Pentafluoroformanilide was prepared giving, in addition, two new compounds 4,5,6,7-tetrafluoro-1-pentafluorophenyl-benzimidazole and 2,3,4,5-tetrafluoro-6-[(pentafluorophenyl)amino]formanilide. Sodium 2,3,4,5,6-pentafluoro-formanilide was reacted with hexafluorobenzene in a molar ratio of 1:4 to give oligomers of α-pentafluorophenyl-ω-fluoro-poly(imino-tetrafluoro-1,4-phenylene). Some of the oligomers were isolated. The results indicate that poly(imino-tetrafluoro-1,4-phenylene) could be formed. Model reaction on hexafluorobenzene with sodium acetanilide, molar ratio 1:2, gave a low yield of N,N′-diacetyl-diphenyl-tetrafluoro-1,4-phenylenediamine.  相似文献   

16.
A novel and convenient synthetic method for the preparation of α,ω-bis(2,6-dimethylphenol)–poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-2OH) is presented. It is based on the oxidative copolymerization of 2,6-dimethylphenol (DMP) with 2,2′-di(4-hydroxy-3,5-dimethylphenyl propane) (TMBPA) in a mixture of water–methanol or chlorobenzene–methanol. By using a 4/1 mole ratio of DMP to TMBPA and different solvent mixtures, it was possible to obtain bifunctional PPO-2OHs with number average molecular weights between 1000 and 5000. A phase-transfer-catalyzed etherification of PPO-2OH chain ends with a mixture of m- and p-chloromethylstyrene was used to synthesize α,ω-bis(vinylbenzyl)-poly(2,6-dimethyl-1,4-phenylene oxide)s (PPO-2VBs). The thermal polymerization of the PPO-2VBs was studied by differential scanning calorimetry, and has demonstrated a very high thermal reactivity for this new class of reactive oligomers.  相似文献   

17.
An ultrafast approach for controlled synthesis of well-defined polysulfonamides is established through organocatalytic anionic ring-opening polymerization (ROP) of N-sulfonyl aziridine in the melt. Several different organobases are investigated, and it is found that N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) catalyzed ROP of 2-methyl-N-tosylaziridine (TsMAz) gives the desired polymer, while 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) initiate the polymerization along with initiator to produce uncontrolled polymers. Using PMDETA as the catalyst, poly(2-methyl-N-tosylaziridine) with molecular weight over 100 kg/mol can be synthesized in less than 90 s. Various initiators, including carboxylic acid, N-sulfonyl amide, unactivated amine, phenol, and thiol, are applicable for this protocol to give the molecular weight and end-group controlled polymers under the open-flask condition. Combining this ultrafast ROP with ring-opening metathesis polymerization (ROMP), a brush copolymer is facile synthesized. This approach allows the ultrafast metal-free synthesis of polysulfonamide and expands the scope of initiators for the ROP of N-sulfonyl aziridines.  相似文献   

18.
Polybenzimidazoles (PBI) are an important class of heterocyclic polymers that exhibit high thermal and oxidative stabilities. The two dominant polymerization methods used for the synthesis of PBI are the melt/solid polymerization route and solution polymerization using polyphosphoric acid as the solvent. Both methods have been widely used to produce high‐molecular weight PBI, but also highlight the obvious absence of a practical organic solution‐based method of polymerization. This current work explores the synthesis of high‐molecular weight meta‐PBI in N,N‐dimethyl acetamide (DMAc). Initially, model compound studies examined the reactivity of small molecules with various chemical functionalities that could be used to produce 2‐phenyl‐benzimidazole in high yield with minimal side reactions. 1H NMR and FTIR studies indicated that benzimidazoles could be efficiently synthesized in DMAc by reaction of an o‐diamine and the bisulfite adduct of an aromatic aldehyde. Polymerizations were conducted at various polymer concentrations (2‐26 wt % polymer) using difunctional monomers to optimize reaction conditions in DMAc which resulted in the preparation of high‐molecular weight m‐PBI (inherent viscosities up to 1.3 dL g?1). TGA and DSC confirmed that m‐PBI produced via this route has comparable properties to that of commercial m‐PBI. This method is advantageous in that it not only allows for high‐polymer concentrations of m‐PBI to be synthesized directly and efficiently, but can be applied to the synthesis of many PBI derivatives. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1795–1802  相似文献   

19.
Diallyl quaternary ammonium chlorides, bromides and N-alkyldiallylamine hydrochlorides were polymerized with ammonium persulfate (APS) in dimethyl sulfoxide (DMSO). The dependences of yield and molecular weight of polymers on polymerization conditions were examined and quaternary ammonium chlorides were found to have better polymerizability than bromides. The poly(diallyl quaternary ammonium chlorides) obtained with APS—DMSO system are expected to have quite high molecular weights, as determined from the measurement of limiting viscosity numbers of the polymers in NaCl aqueous solution.  相似文献   

20.
Basic catalysts in dimethylacetamide solution initiated the polymerization of maleimide to yield a low molecular weight polymer which has a copolymer structure. Approximately 75–85% of the recurring units are formed by hydrogen transfer and 15–25% by vinyl polymerization, as shown by hydrolysis, to yield aspartic acid on the one hand and ammonia and polymaleic acid on the other. Several maleimide derivatives have been prepared, but none has given a high molecular weight polymer by basic catalysis. Some unsaturated carbonamides such as p-vinylbenzamide, mono-N-acrylyl-hexamethylenediamine, and mono-N-acrylyl-p-phenylenediamine have been synthesized and polymerized by basic catalysts. Polymers with low molecular weights were obtained, but the complete structures of all these polymers were not established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号