首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using thermoelastic measurements, specific polymer-diluent interactions have been demonstrated for atactic poly(vinyl alcohol) networks swollen in water. This was done by following a thermodynamic parameter as a function of network swelling, which was controlled by varying the extent of network crosslinking. At low crosslinking (high swelling) the ratio of the energy component fe of the force to the total force f was found to be perhaps a little less than ?0.38 for poly(vinyl alcohol) swollen in water to less than 0.36 volume fraction of polymer. The method of evaluation is new and should be applicable to other polymer single component diluent systems.  相似文献   

2.
The energy component of the stress has been determined for poly(vinyl alcohol) networks in swelling equilibrium with a series of water–ethylene glycol compositions. The data are analyzed by using the equations describing the thermoelasticity of networks in swelling equilibrium. The ratio fe/f of the energy component to the total force, as calculated from these equations, varies systematically with diluent composition but is independent of elongation in a given diluent. For a network crosslinked by terephthalaldehyde, fe/f varied from ?0.33 to ?0.42 as the diluent composition was changed from pure water to 20% ethylene glycol. Similar effects were found in a network crosslinked by formaldehyde. It is not yet certain whether this effect represents a real solvent dependence of fe/f or a failure of the equation of state to account for the effect of composition changes on the force.  相似文献   

3.
The thermoelastic behavior of poly(vinyl alcohol)–poly(acrylic acid) networks was evaluated in pure water and CaCl2 solution. The ratio fe/f of the energy component of the force to the total force, evaluated without taking into account polymer–diluent specific interactions, ranged from ?0.75 for networks swollen in pure water to ?5.7 in 0.1M CaCl2. However, an analysis based on Flory's theory of polyelectrolyte gels yields fe/f constant at ?1.32 when specific interactions are accounted for. In addition, the variation of In (r2)0 with CaCl2 concentration is 2000 times that with water. In neither pure water nor CaCl2 solution can specific interactions be neglected.  相似文献   

4.
Summary: The good swelling and high loading of poly(vinyl alcohol)-graft-poly(ethylene glycol) (PVA-g-PEG) resins proved to be effective for performing supported proline-catalyzed aldol reactions stereoselectively in a wide range of polar non-protic, protic and non-polar solvents as well as in neat substrate. The catalysts could be recovered by filtration and recycled, without significant loss of activity. The use of poly(vinyl alcohol)-graft-poly(ethylene glycol) matrix improved the solubility of the proline-derived catalysts and expanded the scope of permissible solvents for performing selective aldol chemistry.  相似文献   

5.
Mechanochemical energy conversion exhibited by water-swollen poly(vinyl alcohol) gels has been studied. The effective mechanical work produced as well as the chemical energy converted were measured simultaneously. It is shown theoretically and experimentally that the mechanical work developed during the swelling of the mechanochemical system increases with increase of the external load (m), the degree of cross-linking (DC) and the deswelling ratio (ϕ/ϕe, i.e. the ratio of the volume fraction of network polymer (ϕ) to that of the same gel in equilibrium with pure diluent (ϕe)). The chemical energy converted was found to be practically independent of m. The efficiency of energy conversion increased with increase of m and DC, and significantly decreased with increase of ϕ/ϕe. Comparison is made between theoretical predictions and experimental findings.  相似文献   

6.
Poly(vinyl alcohol) single crystal platelets having a stepheight of approximately 100 A. were obtained by isothermal crystallization from dilute triethylene glycol solution. Material crystallized at temperature Tc redissolved in the same solvent at a higher temperature Ts. A plot of Tc versus Ts gave a straight line of slope 0.47. Extrapolation of this line to Tc = Ts gave (Tm)∞, which may be regarded as the dissolution temperature of the crystal of infinite stepheight. (Tm)∞ for this sample in triethylene glycol was 220°C. The crystalline nature of the platelets was established by electron and x-ray diffraction techniques. A total of three Bragg d spacings having the values of 3.9, 4.4, and 4.6 A. (±0.05 A.) were measured. These spacings were indexed as the (200), (101), and (101 ) reflections, respectively, of the monoclinic unit cell of Bunn. The x-ray diffractogram exhibits sharp intensities of the (101 ) and (101) reflections. The crystallinity calculated from the density of the poly(vinyl alcohol) precipitated from dilute solutions in triethylene glycol was 42%. Although the overall degree of crystalline perfection of this poly(vinyl alcohol) is low, the linear relationship between Ts and Tc and the formation of definite shaped single crystals when crystallized from dilute solution suggest that poly(vinyl alcohol) crystallizes in the same manner as other semicrystalline polymers.  相似文献   

7.
Polyacrylamide grafted poly(vinyl alcohol)/polyvinylpyrrolidone (PAM-g-PVA/PVP) semi-interpenetrating polymer network (semi-IPN) hydrogels were designed and prepared via a simple free radical polymerization route initiated by a PVA-(NH4)2Ce(NO3)6 redox reaction technique. The structure of the PAM-g-PVA/PVP hydrogels was characterized by a Fourier transform infrared spectroscope (FTIR), and the morphologies were observed by a scanning electron microscopy (SEM). The swelling kinetics investigations demonstrated that the equilibrium swelling (Q e ) of the (PAM-g-PVA/PVP) semi-IPN hydrogels depended on PVP compositional ratios and temperature. The Q e values were reduced with increasing the PVP contents, which was in agreement with theoretical water contents (S ) fitted by swelling kinetic data, and the swelling mechanism belonged to a non-Fickian mode for the PAM-g-PVA/PVP hydrogels. These hydrogels displayed thermosensitivities different from the common thermoresponsive gels that have a lower critical solution temperature. The swelling is enhanced with increasing the temperature of the media before 42°C, and later the equilibrium swelling is contrarily reduced. Therefore, the swelling behavior of the PAM-g-PVA/PVP hydrogels may be controlled and modulated by means of the compositional ratios of PVP to PAM-g-PVA and temperature.  相似文献   

8.
A theoretical analysis of the thermoelastic behavior of polymeric networks in swelling equilibrium with excess diluent, using both the kinetic theory of elasticity and the Flory-Huggins theory of mixing, is presented. Our calculations are restricted to the special case of diluents composed of a single constituent. The results are used to obtain the ratio of the energy component of the force fe to the total force f of rubber networks swollen in excess n-decane, and we find fe/f to be 0.17, which compares favorably with the value 0.18 reported for the unswollen network. Furthermore, fe/f is independent of elongation, in accordance with theory. The kinetic theory of elasticity is reasonably well obeyed in this highly swollen system although there remains a small contribution to the force from the C2 term of the Mooney-Rivlin phenomenological elasticity equation. It is not believed that this has an appreciable effect on fe/f.  相似文献   

9.
Nano-TiO2 with anionic surface active agent sodium dodecylsulfate (SDS) modified, the poly(vinyl alcohol)/sodium alginate/TiO2 composite films were prepared by method of solution blending representing. The structure of the films was analyzed by XRD and SEM. In addition, air permeability rate, swelling ratio, light transmittance, mechanical properties, and antibacterial properties were tested. The results showed that in compound membrane there was a strong force between poly(vinyl alcohol)/sodium alginate and TiO2 particles, indicating that there was good compatibility between the sodium alginate and the poly(vinyl alcohol). The mixed membranes were of good water resistance, tensile strength, and closure. When the titanium dioxide content increased appropriately, they had very good mechanical properties. In addition, the antibacterial properties of composite membrane gradually increased with the increase in the TiO2content.  相似文献   

10.
The swelling mechanism of poly(vinyl alcohol) (PVA) in a wide range of the equilibrium swelling index, of 7–153% (with H2O) and of 12-297% (with D2O), was investigated by IR, Raman, and broad-band NMR spectroscopy. Analysis of the spectral data obtained confirmed the presence of hydration water (bonded with polymer-free hydroxyl groups) and condensation water (not having been bonded with polymer hydroxyl groups) in poly(vinyl alcohol) swollen samples at low (~7%) and high (>23%) equilibrium swelling indexes, respectively. Moreover, it revealed the intra- and inter-molecular hydrogen bonds breaking in the polymer swollen to higher extent (equilibrium swelling index > 85%).  相似文献   

11.
Solution rheology of 2‐vinyl pyridine and N‐methyl‐2‐vinyl pyridinium chloride random copolymers in ethylene glycol was studied over wide ranges of concentration and effective charge. The fraction of quaternized monomers α and the fraction of monomers bearing an effective charge f of these copolymers were measured using counterion titration and dielectric spectroscopy, respectively. Ethylene glycol is a good solvent for neutral poly(2‐vinyl pyridine), with very few ionic impurities. The viscosity η and relaxation time τ of dilute and semidilute unentangled solutions exhibit the scaling with concentration and effective charge expected by the Dobrynin model. Reduced viscosity data are independent of concentration in dilute solution, giving an intrinsic viscosity that depends on effective charge, and the experimental data obey the Fuoss law in the semidilute unentangled regime. Scaling concentration with the overlap concentration (c/c*) reduces these data to common curves, and c*f ?12/7 as predicted by the Dobrynin model, where f is the fraction of monomers bearing an effective charge. While the overlap concentration depends strongly on effective charge until counterion condensation occurs, the entanglement concentration ce is surprisingly insensitive to effective charge, indicating that entanglement effects are not understood using the Dobrynin model. The terminal modulus G = η/τ depends only on the number density of chains G = ckT/N for c* < c < ce, and Gc3/2 for c > ce independent of the effective charge. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2001–2013, 2006  相似文献   

12.
The vapor–liquid equilibria of binary polymer–solvent systems was modeled using the Non-Random Hydrogen Bonding (NRHB) model. Mixtures of poly(ethylene glycol), poly(propylene glycol), poly(vinyl alcohol) and poly(vinyl acetate) with various solvents were investigated, while emphasis was put on hydrogen bonding systems, in which functional groups of the polymer chain can self-associate or cross-associate with the solvent molecules. Effort has been made to explicitly account for all hydrogen bonding interactions. The results reveal that the NRHB model offers a flexible approach to account for various self- or cross-associating interactions. In most cases model's predictions (using no binary interaction parameter kij = 0) and model's correlations (using one temperature independent binary interaction parameter, kij ≠ 0) are in satisfactory agreement with the experimental data, despite the complexity of the examined systems.  相似文献   

13.
《European Polymer Journal》1987,23(11):829-832
Polymerization of cyclic phosphonitrilic chloride trimer was carried out at sufficiently high temperatures and for sufficiently long periods to cause gelation of the poly(dichlorophosphazene) formed. The resulting crosslinked material, called “inorganic rubber”, was found to be stable enough in the absence of moisture to permit reliable stress-strain and stress-temperature (thermoelastic) measurements in elongation. The stress-strain isotherms at low and moderate values of the elongation, α, showed that the networks had relatively low degrees of crosslinking; at high α and low temperature, they underwent strain-induced crystallization. The thermoelastic data confirmed the occurrence of crystallization at high α and low T. Thermoelastic values of the fraction fe/f of the force that is of energetic origin were negative and generally large, with a magnitude that increased with increase in α, presumably because of the crystallization. In any case, the experimental values of fe/f are in at least qualitative agreement with rotational isomeric state theory, which predicts this ratio to be large and negative.  相似文献   

14.
Thermoelastic (stress–temperature) measurements in elongation have been carried out on polyurethane elastomers obtained from poly(ethylene adipate), poly(ethylene maleate), poly(ethylene glycol), and 4,4′-diphenylmethane diisocyanate. The elastomers were crosslinked by an excess of diisocynate and some of them were additionally crosslinked by dicumyl peroxide. Values of the temperature coefficient d ln r /dT of the unperturbed dimensions of the network chains and the fraction fe/f of the stress, which is due to energetic effects, were calculated from measurements of unswollen samples and samples swollen in benzene to a constant volume fraction ν2 of about 0.6. The coefficient d ln r /dT and the ratio fe/f for unswollen samples were positive but dependent on the extension ratio α and crosslinking density. The fe/f ratio displayed a tendency to decrease with increasing α and this decrease was smaller for elastomers of higher crosslinking density. Additional crosslinking due to dicumyl peroxide reduced the dependence of fe/f on α. Swollen samples had lower positive values of fe/f; which were somewhat independent of α and crosslinking density. Departures from the molecular theories of rubberlike elasticity are explained by intermolecular effects, which, in general, are influenced by crosslinking.  相似文献   

15.
Several water‐soluble polymers were used as templates for the in situ polymerization of pyrrole to determine their effect on the generation of nanosized polypyrrole (PPy) particles. The polymers used include: polyvinyl alcohol (PVA), polyethylene oxide (PEO), poly(vinyl butyral), polystyrene sulfonic acid, poly(ethylene‐alt‐maleic anhydride) (PEMA), poly(octadecene‐alt‐maleic anhydride), poly(N‐vinyl pyrrolidone), poly(vinyl butyral‐co‐vinyl alcohol‐co‐vinyl acetate), poly(N‐isopropyl acrylamide), poly(ethylene oxide‐block‐propylene oxide), hydroxypropyl methyl cellulose, and guar gum. The oxidative polymerization of pyrrole was carried out with FeCl3 as an oxidant. The morphology of PPy particles obtained after drying the resulting aqueous dispersions was examined by optical microscopy, and selected samples were further analyzed via atomic force microscopy. Among the template polymers, PVA was the most efficient in generating stable dispersions of PPy nanospheres in water, followed by PEO and PEMA. The average size of PPy nanospheres was in the range of 160 nm and found to depend on the molecular weight and concentration of PVA. Model reactions and kinetics of the polymerization reaction of pyrrole in PVA were carried out by hydrogen 1H NMR spectroscopy using ammonium persulfate as an oxidant. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Vinyl fluoride was polymerized by photochemical initiation in a continuous-flow cylindrical reactor at room temperature and at pressures of up to 30 atm. Copolymers with vinyl acetate were prepared in order to improve the solubility and processability of poly(vinyl fluoride) (PVF). The copolymers were hydrolyzed to the corresponding vinyl alcohol copolymers and yielded hydrophilic films that are strong and flexible only when swollen by water. It was found that on hydrolysis the Tg, Tm, and heat of fusion as well as degree of crystallinity increased. It was suggested that PVF and the copolymers with vinyl alcohol are isomorphous.  相似文献   

17.
The changes in viscosity and normal stress difference during the ageing of concentrated aqueous solutions of poly(vinyl alcohol) prepared at 80 °C and the effect of the procedure used in the preparation of solutions on the course of these changes are described. The results are interpreted by means of shear complianceJ e and relaxation time 0.  相似文献   

18.
Methyl acrylate (MA), vinyl acetate (VAc) and their binary mixture (MA + VAc) have been graft copolymerized onto poly(vinyl alcohol) using γ-rays as initiator by mutual radiation method in aqueous medium. The optimum conditions for affording maximum grafting have been evaluated. The percentage of grafting has been determined as a function of total dose, concentrations of poly(vinyl alcohol), MA, VAc, and their binary mixture. Rate of grafting (Rp) and induction period (Ip) have been determined as a function of total initial mixed monomer concentration and concentration of poly(vinyl alcohol). The graft copolymer has been characterized by thermogravimetric method. The effect of donor monomer (vinyl acetate) on percent grafting of acceptor monomer (methyl acrylate) has been explained.  相似文献   

19.
Values of ε0ν0 the vaporization energy and volume in the hypothetical liquid state at 0°K., are derived for some simple polar and nonpolar molecules used as models for vinyl polymers. The following empirical relationship between the free volume fraction, f = (v ? v0)/v, and the liquid compressibility coefficient β is demonstrated: ?f2 ∝? This is applied to several vinyl polymer liquids near their glass transition temperatures, Tg, giving. fg ? 0.17, if the “hard-core” volume v* is considered to be independent of pressure and temperature, (i.e., v* = v0); or, fg ?0.12, if the P,T dependence of v* is considered to be the same as that of the glass. These agree with fg values derived by Simha and Boyer from thermal expansion coefficients for the two analogous cases. An empirical viscosity-free volume equation of the Doolittle form: η = ATneb/f is applied to the glass transition, on assuming that this is an isoviscosity state and with the use of reported values for the expansion and compressibility coefficients and dTg/dP for three polymers: polystyrene, poly(methyl methacrylate), and poly(vinyl acetate). Reasonable values of b/n are thus obtained. This viscosity equation is critically examined in the light of molecular theories of liquid viscosity.  相似文献   

20.
A general theory of non-Gaussian elasticity is presented for real polymeric chains having fixed bond angles and restricted internal rotations. The theory contains the displacement-vector distribution given by Nagai, and the Flory-Wall-Hermans procedure is used for the calculation of network properties. Whereas the treatment is valid for all types of polymer chains, it is not totally satisfactory from a practical standpoint because of a slow series convergence if the chains are stiff. It is best utilized for flexible polymers under conditions of light crosslinking. Detailed network behavior is investigated only for polyethylene type chains having uncorrelated internal rotations. In this instance the fractional contribution fe/f of the internal energy of the total force f is found to be a function of elongation at high degress of stretching. It may decrease, or increase, depending upon the sign of fe/f at low elongations. Furthermore, the variation of fe/f with elongation is independent of the fixed bond angle of the chain backbone. Stress–strain behavior and energy–strain behavior are in opposition, i.e., when the non-Gaussian contribution to the stress is greatest, it is the least for the ratio fe/f, and vice versa. The presence of correlated internal rotations would not be expected to greatly alter these general conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号