首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free‐radical copolymerizations of vinyl acetate (VAc = M1) and other vinyl esters (= M2) including vinyl pivalate (VPi), vinyl 2,2‐bis(trifluoromethyl)propionate (VF6Pi), and vinyl benzoate (VBz) with fluoroalcohols and tetrahydrofuran (THF) as the solvents were investigated. The fluoroalcohols affected not only the stereochemistry but also the polymerization rate. The polymerization rate was higher in the fluoroalcohols than in THF. The accelerating effect of the fluoroalcohols on the polymerization was probably due to the interaction of the solvents with the ester side groups of the monomers and growing radical species. The difference in the monomer reactivity ratios (r1, r2) in THF and 2,2,2‐trifluoroethanol was relatively small for all reaction conditions and for the monomers tested in this work, whereas r1 increased in the VAc‐VF6Pi copolymerization and r2 decreased in the VAc‐VPi copolymerization when perfluoro‐tert‐butyl alcohol was used as the solvent. These results were ascribed to steric and monomer‐activating effects due to the hydrogen bonding between the monomers and solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 220–228, 2000  相似文献   

2.
3.
The homopolymerization of a series of alkyl vinyl sulfoxides (CH2[dbnd]CHSOR; R = CH3 (MVSO), C2H5 (EVSO), t-C4H9 (BVSO)) and their copolymerization with vinyl acetate (VAc) with 2,2′-azobisisobutyronitrile (AIBN) as initiator at 60°C was attempted. MVSO was found to homopolymerize radically, but EVSO and BVSO were not. Poly-MVSO is soluble in chloroform, methanol, DMSO, and water, but insoluble in acetone and benzene. MVSO and EVSO were found to copolymerize with VAc, but BVSO was not. The copolymerization parameters obtained for both systems were as follows; r1(MVSO) = 2.23, r2 (VAc) = 0.09, and r1(EVSO) = 3.40, r2 (VAc) = 0.11, respectively. MVSO/vinyl alcohol (VA) copolymers were obtained through the saponification of MVSO/VAc copolymers by sodium hydroxide in methanol. The solubility of MVSO/VAc and of MVSO/VA copolymers toward various solvents was examined, and it was observed that the sulfoxide comonomer has a tendency to give amphiphilicit to poly(vinyl acetate) and poly(vinyl alcohol). The 24 mol% MVSO containing VAc copolymer is soluble in both benzene and water.  相似文献   

4.
The rate of solution copolymerization of styrene (M1) and 2-hydroxyethyl methacrylate (M2) was investigated by dilatometry. N,N-dimethyl formamide, toluene, isopropyl alcohol, and butyl alcohol were used as solvents. Polymerization was initiated by α,α′-azobisisobutyronitrile at 60°C. The initial copolymerization rate increased nonlinearly with increasing 2-hydroxyethyl methacrylate (HEMA)/styrene ratio. The copolymerization rate was promoted by solvents containing hydroxyl groups. Two different approaches were used for the prediction of copolymerization rates. The relationships proposed for the copolymerization rates calculation involve the effects of the total monomer concentration, mole fraction of HEMA, and of the solvent type. Different reactivity ratios were found in polar and nonpolar solvents: r1 = 0.53, r2 = 0.59 in N,N-dimethyl formamide, isopropyl alcohol and n-butyl alcohol; r1 = 0.50, r2 = 1.65 in toluene. The usability of these reactivity ratios was confirmed by batch experiments.  相似文献   

5.
Abstract

The monomer reactivity ratios for vinyl acetate (VAc)-allilidene diacetate (ADA) copolymerization have never been obtained. The composition of VAc-ADA copolymers was determined by NMR spectroscopy, measuring CH protons corresponding to ADA at 3.1τ and VAc at 5.1τ. The monomer reactivity ratios were evaluated; r1 = 1.34 ± 0.05 and r2 = 0.48 ± 0.03, where M1 = ADA and M2 = VAc. From these values the Q and e values for ADA were calculated: Q = 0.047 and e = 0.44 by taking Q = 0.026 and e = ?0.22 for VAc. The H value [1] for copolymerization of ADA, VAc, and vinyl chloride (VC) is 0.87.  相似文献   

6.
The crosslinking reaction of 1,2-polybutadiene (1,2-PB) with dicumyl peroxide (DCPO) in dioxane was kinetically studied by means of Fourier transform near-infrared spectroscopy (FTNIR). The crosslinking reaction was followed in situ by the monitoring of the disappearance of the pendant vinyl group of 1,2-PB with FTNIR. The initial disappearance rate (R0) of the vinyl group was expressed by R0 = k[DCPO]0.8[vinyl group]−0.2 (120 °C). The overall activation energy of the reaction was estimated to be 38.3 kcal/mol. The unusual rate equation was explained in terms of the polymerization of the pendant vinyl group as an allyl monomer involving degradative chain transfer to the monomer. The reaction mixture involved electron spin resonance (ESR)-observable polymer radicals, of which the concentration rapidly increased with time owing to a progress of crosslinking after an induction period of 200 min. The crosslinking reaction of 1,2-PB with DCPO was also examined in the presence of vinyl acetate (VAc), which was regarded as a copolymerization of the vinyl group with VAc. The vinyl group of 1,2-PB was found to show a reactivity much higher than 1-octene and 3-methyl-1-hexene as model compounds in the copolymerization with VAc. This unexpectedly high reactivity of the vinyl group suggested that an intramolecular polymerization process proceeds between the pendant vinyl groups located on the same polymer chain, possibly leading to the formation of block-like polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4437–4447, 2004  相似文献   

7.
The radical copolymerization of diallyl tartrate (DATa) (M1) with diallyl succinate (DASu), diallyl phthalate (DAP), allyl benzoate (ABz), vinyl acetate (VAc), or styrene (St) was investigated in order to disclose in more detail the characteristic hydroxyl group's effect observed in the homopolymerization of DATa. In the copolymerization with DASu or DAP as a typical diallyldicarboxylate, the dependence of the rate of copolymerization on monomer composition was different for different copolymerization systems and unusual values larger than unity for the product of monomer reactivity ratios, r1r2, were obtained. In the copolymerization with ABz or VAc (M2), the r1 and r2 values were estimated to be 1.50 and 0.64 for the DATa/ABz system and 0.76 and 2.34 for the DATa/VAc system, respectively; the product r1r2 for the latter copolymerization system was found again to be larger than unity. In the copolymerization with St, the largest effect due to DATa monomer of high polarity was observed. Solvent effects were tentatively examined to improve the copolymerizability of DATa. These results are discussed in terms of hydrogen-bonding ability of DATa.  相似文献   

8.
The controlled/living radical polymerization of vinyl acetate (VAc) and its copolymerization with methyl acrylate (MA) were investigated in bulk or fluoroalcohols using manganese complex [Mn2(CO)10] in conjunction with an alkyl iodide (R? I) as an initiator under weak visible light. The manganese complex induced the controlled/living radical polymerization of VAc even in the fluoroalcohols without any loss of activity. The R? I/Mn2(CO)10 system was also effective for the copolymerization of MA and VAc, in which MA was consumed faster than VAc, and then the remaining VAc was continuously and quantitatively consumed after the complete consumption of MA. The 1H and 13C NMR analyses revealed that the obtained products are block copolymers consisting of gradient MA/VAc segments, in which the VAc content gradually increases, and homopoly(VAc). The use of fluoroalcohols as solvents increased the copolymerization rate, controllability of the molecular weights, and copolymerizability of VAc. The saponification of the VAc units in poly(MA‐grad‐VAc)‐block‐poly(VAc) resulted in the corresponding poly(MA‐co‐γ‐lactone)‐block‐poly(vinyl alcohol) due to the intramolecular cyclization between the hydroxyl and neighboring carboxyl groups in the gradient segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1343–1353, 2009  相似文献   

9.
The synthesis of vinyl alcohol copolymers is limited due to the poor radical reactivity of vinyl acetate (VAc), the traditional precursor to polyvinyl alcohol (PVA). Main group monomers such as BN 2-vinylnaphthalene (BN2VN) have attracted attention as alternatives to VAc to form side chain hydroxyls via oxidation, but outstanding questions of molecular weight control remain. Herein we report systematic investigation of solvent, temperature, and initiator concentration as factors influencing BN2VN degree of polymerization. We find increased chain transfer to toluene, hypothesized to arise from differences in radical stabilization and reactivity by aromatic and BN aromatic rings. As a result of these combined efforts, high molecular weight (Mw ~ 105 g mol−1) BN2VN homopolymers and BN2VN-styrene copolymers were obtained.  相似文献   

10.
The copolymerization of vinylhydroquinone (VHQ) and vinyl monomers, e.g., methyl methacrylate (MMA), 4-vinyl-pyridine (4VP), acrylamide (AA), and vinyl acetate (VAc), by tri-n-butylborane (TBB) was investigated in cyclohexanone at 30°C under nitrogen. VHQ is assumed to copolymerize with MMA, 4VP, and AA by vinyl polymerization. The following monomer reactivity ratios were obtained (VHQ = M2): for MMA/VHQ/TBB, r1 = 0.62, r2 = 0.17; for 4VP/VHQ/TBB, r1 = 0.57, r2 = 0.05; for AA/VHQ/TBB, r1 = 0.35, r2 = 0.08. The Q and e values of VHQ were estimated on the basis of these reactivity ratios as Q = 1.4 and e = ?;1.1, which are similar to those of styrene. This suggests that VHQ behaves like styrene rather than as an inhibitor in the TBB-initiated copolymerization. No homopolymerization was observed either under nitrogen or in the presence of oxygen. The reaction mechanism is discussed.  相似文献   

11.
The radical copolymerization of N-(2,6-dimethylphenyl)maleimide (DMPhMI) and 2,4,4-trimethylpentene (TP) was investigated in several solvents at 60°C. The copolymerization rate and the molecular weight of the resulting copolymers were dependent on the kind of solvent used. It was also revealed that the monomer reactivity ratios depended on the solvent; r1 = 0.086 and r2 = 0 in chloroform and r1 = 0.25 and r2 = 0 in benzene, where DMPhMI and TP are M1 and M2, respectively. The propagation rate constants were determined for the homopolymerization and copolymerization in chloroform and benzene using electron spin resonance spectroscopy. The homo- and crosspropagation rate constants (k11 and k12, respectively) were revealed to depend on the solvent: k11 is 20 and 37 L/mol·s and k12 is 230 and 150 L/mol·s in chloroform and in benzene, respectively. The interaction between the maleimide moiety and the solvent molecules was discussed based on the acceptivity of the solvents. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1515–1525, 1997  相似文献   

12.
Emulsion polymerization of vinyl benzoate and its copolymerization with vinyl acetate or styrene are described. The effect of the potassium persulfate initiator, and the sodium lauryl sulfate emulsifier concentration on the rate of vinyl benzote homopolymerization and the molecular weight of the polymers was determined. In copolymerization with vinyl benzoate, both comonomers, vinyl acetate and styrene, decrease the initial polymerization rate. With increasing amounts of styrene in the comonomer mixture the polymerization rate increases but with vinyl acetate an opposite effect is observed. Reactivity ratios of copolymerizations were determined. For the vinyl benzoate [M1]-styrene [M2] comonomer system a r1 = 0.03 and a r2 = 29.58 and for vinyl benzoate [M1]-vinyl acetate [M2], a r1 = 1.93 and a r2 = 0.20 was obtained. From the vinyl benzoate-styrene reactivity ratios the Qe parameters were calculated.  相似文献   

13.
The radical polymerization and copolymerization of butadiene 1-carboxylic acid (Bu-1-Acid) were studied in a variety of the electron-donor solvents such as dimethylformamide (DMF), tetrahydrofuran (THF), methyl ethyl ketone (MEK), acetonitrile (ACN), and benzene (BZ) using AIBN as an initiator at 50°C. Under these conditions, the polymerization rate of Bu-1-Acid increased in the order, DMF < THF < MEK < ACN < BZ in the various solvents. In copolymerization with styrene [M2] and acrylonitrile [M2], the monomer reactivity ratio r1 increased and r2 decreased in the same order. Moreover, it was found that Alfrey-Price Q-e value of Bu-1-Acid increased depending on solvent in the order DMF < THF < MEK < ACN < BZ. These variations were correlated to the electron-donating power (Δvcm?) of the solvents used and are discussed on the basis of the solvation of Bu-1-Acid into the solvent. Also, it was found that the microstructures of these polymers were always trans-1,4 and did not change with the solvent used.  相似文献   

14.
The radical copolymerization of vinylidene chloride (Vc, M1) with 3(2-methyl)-6-methylpyridazinone (I, M2) was carried out in benzene, ethanol, phenol, and acetic acid at 60 and 80°C. The monomer reactivity ratios were found to vary with the reaction conditions. The linear correlationships were obtained by plotting the values of log r1 against those of V C[dbnd]O and V C[dbnd]C of monomers determined in the solvents.  相似文献   

15.
Methyl acrylate (MA), vinyl acetate (VAc) and their binary mixture (MA + VAc) have been graft copolymerized onto poly(vinyl alcohol) using γ-rays as initiator by mutual radiation method in aqueous medium. The optimum conditions for affording maximum grafting have been evaluated. The percentage of grafting has been determined as a function of total dose, concentrations of poly(vinyl alcohol), MA, VAc, and their binary mixture. Rate of grafting (Rp) and induction period (Ip) have been determined as a function of total initial mixed monomer concentration and concentration of poly(vinyl alcohol). The graft copolymer has been characterized by thermogravimetric method. The effect of donor monomer (vinyl acetate) on percent grafting of acceptor monomer (methyl acrylate) has been explained.  相似文献   

16.
In order to clarify the propagation reaction, vinyl ether was copolymerized with the corresponding alkenyl ether under various conditions. cis-Propenyl ether (cis-PE) was several times more reactive than trans-PE and the corresponding vinyl ether in the copolymerization catalyzed by BF3 · O(C2H5)2 in toluene. However, the reactivity of cis-PE relative to trans-PE and the vinyl ether was found to be greatly decreased with increasing polarity of the solvent and to be very close to unity in such polar solvents as nitroethane. On the other hand, the reactivity of trans-IBPE relative to IBVE was scarcely changed by polymerization conditions. Also, the nature of the initiator and polymerization temperature affect the reactivity of cis-PE relative to the vinyl ether. These phenomena were explained by the relative stability of the bridged and open car bonium ions based on the polarity of the solvent and steric hindrance due to substituents in the trans isomer.  相似文献   

17.
The radical copolymerization of N,N-diallyl-N,N-dimethylammonium chloride (AMAC) (M1) with ethylene glycol vinyl ether (M2) in an aqueous medium proceeds at a high rate to afford random copolymers. The reactivity ratios equal to r 1 = 2.18 and r 2 = 0.01 indicate that AMAC is a more active comonomer. The overall reaction order in comonomers is 2.4, and the effective activation energy is 97.4 ± 2 kJ/mol. The monomer M1 enters into copolymerization by both of the double bonds with the formation of pyrrolidinium structures in the chain through the cyclization stage.  相似文献   

18.
The radical copolymerization of cyclohexene (M1) and N‐cyclohexylmaleimide (M2) was carried out with 2,2′‐azobis(isobutyronitrile) as an initiator in various solvents at 55°C. The copolymerization of cyclohexene with N‐cyclohexylmaleimide in chloroform, dioxane and benzene proceeded in a homogeneous system to give an alternating copolymer when the monomer of cyclohexene was over 40 mol% in the feed. It was found that the initial rate of the copolymerization (Rp), as well as the number‐average molecular weight of copolymers, were dependent on the monomer composition and was at maximum at about 30 mol% of cyclohexene in the feed. The effects of solvents on the Rp and reactivity ratios were also investigated in this copolymerization system. The copolymerization in dioxane produced a higher Rp than that in chloroform and benzene, and the monomer reactivity ratios were found to be r1=0, r2=0.032 in chloroform; r1=0, r2=0.065 in benzene and r1=0, r2=0.14 in dioxane, respectively.  相似文献   

19.
In order to ascertain the effect of a donor monomer, vinyl acetate (VAc), on the graft copolymerization of acceptor monomers, ethyl acrylate (EA) and butyl acrylate (BA), grafting of mixed vinyl monomers (EA + VAc) and (BA + VAc) was carried out on Himachali wool in aqueous medium using ceric ammonium nitrate (CAN) as a redox initiator. Graft copolymerization was carried out at different temperatures for various reaction periods. Percent grafting and percent efficiency were determined as functions of 1) concentration of mixed vinyl monomers, 2) concentration of CAN, 3) concentration of HNO3 4) temperature, and 5) reaction time. VAc, the donor monomer, was found to decrease percent grafting of EA and BA onto wool.  相似文献   

20.
Absolute rate constants of the vinyl benzoate polymerization have been measured by use of the intermittent illumination method in various aromatic solvents and ethyl acetate at 30°C. The determination of absolute rate constants showed that effects of solvent on the polymerization rate of vinyl benzoate were mainly ascribed to the variation of kp values with solvents rather than that of kt values. The kp values for solvents used increased in the order: benzonitrile < ethyl benzoate < anisole < chlorobenzene < benzene < fluorobenzene < ethyl acetate. There was an eightfold difference between the largest and the smallest values The large variation among kp values was explained neither by the copolymerization through solvents nor the chain transfer to solvents, but by a reversible complex formation between the propagating radical and aromatic solvents. This explanation was supported by a correlation between kp values and calculated delocalization stabilizations for the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号