首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
5-Methyl- and 6-methyl-2-phenyl-2H-indazole-4,7-diones were condensed with 2-aminobenzenethiol or 6-substituted-3-aminopyridine-2(1H)thiones 4 to produce a new type of 5-methyl-2-phenyl-4H-pyrazolophenothiazin-4-ones or 8-substituted-7-aza-5-methyl-2-phenyl-4H-pyrazolophenothiazin-4-one derivatives. From 6-bromo-2,5-dimethyl-1,3-diphenyl-2H-isoindole-4,7-dione and 4 8-substituted-7-aza-2,5-dimethyl-1,3-diphenyl-4H-pyrrolophenothiazin-4-one derivatives were also prepared.  相似文献   

2.
The phase equilibria as well as the properties and crystal structures of the compounds formed in both Li2SO4-MgSO4 and Li2SO4-Li4SiO4 systems have been studied by means of x-ray diffraction technique (at high and room temperatures) as well as by the thermal analyses (DTA, DSC, TGA, etc.). In Li2SO4-MgSO4 system there exists a compound Mg4Li2(SO4)5 formed by peritectic reaction at 840°C and decomposed at 105°C into the Li2SO4-base solid solution and MgSO4 · Mg4Li2(SO4)5 and Li2SO4-base solid solution conduct an eutectic reaction at 663°C with the composition of eutectic point lying in 22 mol% MgSO4. The solubility of MgSO4 in Li2SO4 is a little smaller than 10 mol% while at the same time the Li2SO4 phase transition temperature decreases from 574 to 560°C On the other hand, no noticeable solid solubility of Li2SO4 in MgSO4 has been observed. The reaction is an endothermal one and its heat of formation is 2.57 kJ/mol. The activation energy of the reaction calculated by thermal peak displacement method at various heating rates is 173.5 kJ/mol (1.80 ev). The crystal Mg4Li2(SO4)5 belongs to orthorhombic system with lattice parameters at 180°C: a = 8.577, b=8.741, c= 11.918 Å. The space group seems to be either P222 or P mmm. Assuming that there are two formula units in a unit cell, the density calculated is then 2.20 g/cm3 very close to that of Li2SO4 or MgSO4. Meanwhile, in Li2SO4-Li4SiO4 system a new phase Li8-2x(SiO4)8-x(SO4)x is formed by peritectic reaction at 953°C with a range of composition x=0.96 ?0.58. The crystal belongs to ortho-rhombic system with lattice parameters at x=0.8: a = 5.002, b= 6.173 and c=10.608Å. The density observed is 2.31 g/cm3 and there are 2 formula units in an unit cell. It is shown from the measurements of piezoelectric and laser SHG coefficients of the crystal that the crystal posseses a symmetrical center with the space group belonging to P mmn. The lattice parameter c has a maximum at x=0.8. In the air Li8-2x(SiO4)2-x(SO4)x can absorb 7.6 wt% water vapour and other gases which can only be desorbed by heating it at a temperature above 350°C. Neither absorption nor desorbtion can change its crystal structure, a characteristic similar to that of zeolite molecular sieve. The dewater activation energy of Li8-2x(SiO4)2-x(SO4)x is 171.5 kJ/mol. Li8-2x(SiO4)2-x(SO4)x and Li4SO4 bring about an eutectic reaction at 823°C with its eutectic composition being 12 mol% Li4SiO4. No observable solubility of Li4SiO4 in Li3SO4 has been noticed. The solubility of Li2SO4 in Li4SiO4 is approximately equal to 5 mol%. With Li2SO4 being dissolved in, the phase transition temperature of Li4SiO4 is decreased. After being fused, the specimens Li3SO4-MgSO4 and Li2SO4-Li4SiO4 are cooled at a rate of 10°C/min, their metastable eutectic systems are resulted respectively.  相似文献   

3.
2-Trifluoromethyl-4H-thiochromene-4-thione obtained from 2-trifluoromethyl-4H-thiochromen-4-one and P2S5 reacts with aromatic amines, hydrazine hydrate, phenylhydrazine, and hydroxylamine at the C(4) atom of the chromene ring to give the corresponding anils, azine, hydrazones, and oxime of thiochromone. 2-Trifluoromethyl-4H-thiochromen-4-one is oxidized by hydrogen peroxide in AcOH into 4-oxo-2-trifluoromethyl-4H-thiochromene 1,1-dioxide and reduced by NaBH4 to 2-trifluoromethyl-4H-thiochromen-4-ol or cis-2-(trifluoromethyl)thiochroman-4-ol. When treated with hydrazine hydrate, thiochromen-4-one gives 3(5)-(2-mercaptophenyl)-5(3)-trifluoromethylpyrazole. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 504–509, March, 2006.  相似文献   

4.
The crystal structure of LaIr4B4 has been refined from single crystal counter data. LaIr4B4 is tetragonal,P42/n,Z=2, isotypic with NdCo4B4, |F|/|F o|=0.039 for 312 independent reflections [|F o|>2 (F o)]. ThIr4B4 and ThOs4B4 also belong to the NdCo4B4-type structure. URu4B4 and UOs4B4 were found to crystallize with LuRu4B4-type structure. The crystal chemistry of (RE)T 4B4-phases is discussed and simple geometric relations are shown to exist between them.Dedicated to Prof.B. T. Matthias in celebration of his 60th birthday.  相似文献   

5.
By treating 2e-methyl-4-oxo-trans-decahydroquinoline with lithium acetylide a mixture of stereoisomeric 4-cis-hydroxy-2e-methyl- and 4-trans-hydroxy-2e-methyl-4-ethynyl-trans-decahydroquinolines was obtained in 3:2 ratio. Their reaction with acetonitrile in the presence of sulfuric acid (Ritter's reaction) results in a mixture of stereoisomeric 4-cis-acetylamino-2e-methyl- and 4-trans-acetylamino-2e-methyl-4-ethynyl-trans-decahydroquinolines in the same ratio. The ethynyl group of alcohols synthesized is not hydrated under conditions of Kuchrerov's reaction. The boiling of the alcohols with formic acid furnished a mixture of 4-acetyl-2e-methyl and 2e-methyl-4-ethynyl-1,2,3,6,7,8,9,10-octahydroquinolines in 1:7 ratio. The former of these compounds under conditions of Ritter's reaction yielded a mixture (1:1.4) of stereoisomeric 4-acetyl-4-trans-acetylamino- and 4-acetyl-4-cis-acetylamino-2e-methyl-trans-decahydroquinolines. From 2e-methyl-4-ethynyl-1,2,3,6,7,8,9,10-octahydroquinoline under the same conditions were obtained both already mentioned stereoisomeric 4-acetylamino-2e-methyl-4-ethynyl-decahydroquinolines (53% of cis-isomer and 35% of trans-isomer in the mixture) and 4-acetyl-4-acetylamino-2e-methyldecahydroquinolines (7% of cis-isomer and 5% of trans-isomer).  相似文献   

6.
The new compounds Pr8(C2)4Cl5 (1), Pr14(C2)7Cl9 (2), Pr22(C2)11Cl14 (3), Ce2(C2)Cl (4), La2(C2)Br (5), Ce2(C2)Br (6), Pr2(C2)Br (7), Ce18(C2)9Cl11 (8), and Ce26(C2)13Cl16 (9) were prepared by heating mixtures of LnX3, Ln and carbon or in an alternatively way LnX3, and “Ln2C3–x” in appropriate amounts for several days between 750 and 1200 °C. The crystal structures were investigated by X‐ray powder analysis (5–7) and/or single crystal diffraction (1–4, 8, 9). Pr8(C2)4Cl5 crystallizes in space group P21/c with the lattice parameters a = 7.6169(12), b = 16.689(2), c = 6.7688(2) Å, β = 103.94(1) °, Pr14(C2)7Cl9 in Pc with a = 7.6134(15), b = 29.432(6), c = 6.7705(14) Å, β = 104.00(3) °, Pr22(C2)11Cl14 in P21/c with a = 7.612(2), b = 46.127(9), c = 6.761(1) Å, β = 103.92(3) °, Ce2(C2)2Cl in C2/c with a = 14.573(3), b = 4.129(1), c = 6.696(1) Å, β = 101.37(3) °, La2(C2)2Br in C2/c with a = 15.313(5), b = 4.193(2), c = 6.842(2) Å, β = 100.53(3) °, Ce2(C2)2Br in C2/c with a = 15.120(3), b = 4.179(1), c = 6.743(2) Å, β = 101.09(3) °, Pr2(C2)2Br in C2/c with a = 15.054(5), b = 4.139(1), c = 6.713(3) Å, β = 101.08(3) °, Ce18(C2)9Cl11 in P$\bar{1}$ with a = 6.7705(14), b = 7.6573(15), c = 18.980(4) Å,α = 88.90(3) °, β = 80.32(3) °, γ = 76.09(3) °, and Ce26(C2)13Cl16 in P21/c with a = 7.6644(15), b = 54.249(11), c = 6.7956(14) Å, β = 103.98(3) ° The crystal structures are composed of Ln octahedra centered by C2 dumbbells. Such Ln6(C2)‐octahedra are condensed into chains which are joined into undulated sheets. In compounds 1–4 three and four up and down inclined ribbons alternate (4+4, 4+33+4–, 4+43+44+3), in compounds 8 and 9 four and five (4+5, 5+44+54+4), and in compounds 4–7 one, one ribbons (1+1) are present. The Ln‐(C2)‐Ln layers are separated by monolayers of X atoms.  相似文献   

7.
Formation of Methyl 5,6-Dihydro-l, 3(4H)-thiazine-4-carboxyiates from 4-Allyl-l, 3-thiazol-5(4H)-ones . The reaction of N-[1-(N, N-dimethylthiocarbamoyl)-1-methyl-3-butenyl]benzamid ( 1 ) with HCl or TsOH in MeCN or toluene yields a mixture of 4-allyl-4-methyl-2-phenyl-1,3-thiazol-5(4H)-one ( 5a ) and allyl 4-methyl-2-phenyl-1,3-thiazol-2-yl sulfide ( 11 ; Scheme 3). Most probably, the corresponding 1,3-oxazol-5(4H)-thiones B are intermediates in this reaction. With HCl in MeOH, 1 is transformed into methyl 5,6-dihydro-4,6-dimethyl-2-phenyl-1,3(4H)-thiazine-4-carboxylate ( 12a ). The same product 12a is formed on treatment of the 1,3-thiazol-5(4H)-one 5a with HCl in MeOH (Scheme 4). It is shown that the latter reaction type is common for 4-allyl-substituted 1,3-thiazol-5(4H)-ones.  相似文献   

8.
Summary N-Acylanthranilamides react with dibromotriphenylphosphorane in the presence of triethylamine as HBr captor to give 4-imino-4H-3,1-benzoxazines in good yields. If the reaction is carried out without acid acceptor, N-acetylanthranilamides yield 2-methyl-4-quinazolones, whereas N-benzoylanthranilamides give 2-phenyl-4-imino-4H-3,1-benzoxazines. It has also been found that 2-methyl-4-imino-4H-3,1-benzoxazines rearrange under the influence of HCl or HBr into the respective 2-methyl-4-quinazolones; 2-phenyl-4-imino-4H-3,1-benzoxazines, however, do not undergo such a rearrangement.
Synthese und Umlagerung von 4-Imino-4H-3,1-benzoxazinen
Zusammenfassung Die Umsetzung von N-Acyl-anthranilsäure-amiden mit Triphenyldibromphosphoran in Gegenwart von Triethylamin als HBr-Akzeptor führt mit guten Ausbeuten zu 4-Imino-4H-3,1-benzoxazinen. Wird die Reaktion ohne säurebindendes Mittel durchgeführt, dann entstehen aus N-Acetyl-anthranilsäure-amiden 2-Methylchinazolone-4, jedoch erhält man aus N-Benzoylanthranilsäure-amiden 2-Phenyl-4-imino-4H-3,1-benzoxazine. 2-Methyl-4-imino-4H-3,1-benzoxazine erleiden unter dem Einfluß von HBr oder HCl eine Umlagerung in entsprechende 2-Methylchinazolone-4, während 2-Phenyl-4-imino-4H-3,1-benzoxazine zu einer solchen Umlagerung nicht befähigt sind.
  相似文献   

9.
Rare Earth Halides Ln4X5Z. Part 3: The Chloride La4Cl5B4 – Preparation, Structure, and Relation to La4Br5B4, La4I5B4 La4Cl5B4 is synthesized by reaction of LaCl3, La metal and boron in sealed Ta containers at 1050 °C < T < 1350 °C. It crystallizes in the monoclinic space group C2/m with a = 16.484(3) Å, b = 4.263(1) Å, c = 9.276(2) Å and β = 120.06(3)°. Ce4Cl5B4 is isotypic, a = 16.391(3) Å, b = 4.251(1) Å, c = 9.180(2) Å and β = 120.20(3)°. The La atoms form strings of trans-edge shared La octahedra, and the B atoms inside the strings form B4-rhomboids, which are condensed to chains via opposite corners. The Cl atoms interconnect the channels according to La2La4/2Cli−i6/2Cli−a2/2Cla−i2/2. The crystal structures of the bromide and the iodide are comparabel, however, the interconnection of the strings is different in the three structure types, as 14 Cl, 13 Br and 12 I atoms surround the La6 octahedra.  相似文献   

10.
Concentrated aqueous solutions of magnesium chloride and calcium nitrate, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4 · H2O, the isolation of the earth alkaline salts MgC4S4 · 6 H2O ( 1 ) and CaC4S4 · 4 H2O ( 2 ) as orange and red crystals. The crystal structure determinations ( 1 : monoclinic, C2/c, a = 17.2280(7), b = 5.9185(2), c = 13.1480(4) Å, β = 104.730(3)°, Z = 4; 2 : monoclinic, P21/m, a = 7.8515(3), b = 12.7705(5), c = 10.6010(4) Å, β = 93.228(2)°, Z = 4) show the presence of C4S42? ions with almost undistorted D4h symmetry having average C–C and C–S bond lengths of 1.451Å and 1.659Å for 1 and 1.451Å and 1.655Å for 2 . The structure of 1 contains discrete, octahedral [Mg(H2O)6]2+ complexes. Several O–H····O and O–H····S bridges with H····O and H····S distances of less than 2.50Å connect cations and anions. The structure of 2 is built of concatenated, edge‐sharing Ca(H2O)6S2 polyhedra. The Ca2+ ions have the coordination number eight, C4S42? act as a chelating ligands towards Ca2+ with Ca–S distances of 3.14Å. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

11.
The Crystal Packing in three Modifications of PPh4[ReO(S4)2] and PPh4[ReS(S4)2] Mixed crystals PPh4[ReS(S4)2]0,63[ReO(S4)2]0,37 were obtained from PPh4Cl, ReCl5 and Na2S4 in acetonitrile. Their crystal structure corresponds to the known structure of this kind of compound (space group P21/n). In a similar reaction with ReBr5 instead of ReCl5, PPh4[ReO(S4)2] was obtained in small yield. Its triclinic crystal structure was determined by X‐ray crystallography (space group P1). It contains cation pairs (PPh4+)2 such as they have been found in many other instances. In contrast, the crystal structures of the mixed crystals and of one known modification of PPh4[ReS(S4)2] have PPh4+ columns similar to compounds crystallizing in the space group P4/n, albeit in a severely distorted manner; their space group P21/n is a subgroup of P4/n with a doubled unit cell. In another modification of PPh4[ReS(S4)2] (space group P21/c) the columns are less distorted, but arranged in a different way.  相似文献   

12.
(HgBr2)3(As4S4)2 is obtained by high temperature reaction of stoichiometric amounts of HgBr2 and As4S4. It crystallizes in the monoclinic space group P21/c with the lattice constants a = 9.593(5) Å, b = 11.395(5) Å, c = 13.402(5) Å, β = 107.27(3)°, V = 1399(1) Å3, and Z = 2. The crystal structure consists of molecular units built from two undistorted As4S4 cages which are coordinated weakly by three almost linear HgBr2 units. Raman spectra clearly indicate minor bonding interactions between HgBr2 and As4S4.  相似文献   

13.
Cyclisation of 2-methyl-3-phenyl-but-3-en-anilide (III) with polyphosphoric acid gave cis-3, 4-dimethyl-4-phenyl-3, 4-dihydro-carbostyril (VII) in 61% yield together with a small amount of 2, 3-dimethylindenone (VIII), whereas with AlCl3 a phenyl group was split off to give 3, 4-dimethylcarbostyril (VI). The anilide III isomerises to cis- and trans-2, 3-dimethyl-cinnam-anilide (IV resp. V) under basic conditions. The anilides IV and V gave only small yields of the dihydrocarbostyril VII with polyphosphoric acid. Chlorination of VII in position 3 using PCl5 yielded IX which, on splitting out HCl, gave 3-methylene-4-methyl-4-phenyl-3, 4-dihydro-carbostyril (X). X was converted to trans-3, 4-dimethyl-4-phenyl-3, 4-dihydro-carbostyril (XI) by catalytic hydrogenation.  相似文献   

14.
Novel 1-benzyl-3-(4-fluorophenyl)-1H-pyrazole-4-carbaldehydes 3a to 3e were synthesized via Vilsmeier-Haack reaction of the appropriate 1-benzyl-2-(1-(4-fluorophenyl)ethylidene)hydrazines, derived from 4-fluoroacetophenone 1 with substituted 2-benzylhydrazines 2a to 2e . The base catalyzed condensation of 1-benzyl-3-(4-fluorophenyl)-1H-pyrazole-4-carbaldehydes 3a to 3e with 1-(4-fluoro-2-hydroxyphenyl)ethanone 4 gave (E)-3-(1-benzyl-3-(4-fluorophenyl)-1H-pyrazol-4-yl)-1-(4-fluoro-2-hydroxyphenyl)prop-2-en-1-ones 5a to 5e . On cyclization with dimethyl sulfoxide (DMSO)/I2, compounds 5a to 5e gave 2-(1-benzyl-3-(4-fluorophenyl)-1H-pyrazol-4-yl)-7-fluoro-4H-chromen-4-ones 6a to 6e . Structures of all novel compounds were confirmed by infrared (IR), proton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR), and mass spectral data. All the synthesized compounds were screened for their antibacterial activities.  相似文献   

15.
More Silicates with ?Stuffed Pyrgoms”?: CsKNaLi9{Li[SiO4]}4, CsKNa2Li8{Li[SiO4]}4, RbNa3Li8{Li[SiO4]}4 [1] and RbNaLi4{Li[SiO4]}2 [2] Single crystals of the new silicates CsKNaLi9{Li[SiO4]}4, CsKNa2Li8{Li[SiO4]}4, RbNa3Li8{Li[SiO4]}4 and RbNaLi4{Li[SiO4]}2 as well as powder (Rb-containing compounds only) were obtained for the first time. The samples were prepared by heating well ground mixtures of the binary oxides in Ni and Ag tubes, respectively. The structure determination was carried out by four-circle diffractometer data (MoKα radiation; Siemens AED 2): CsKNaLi9{Li[SiO4]}4: tetragonally prismatic crystals, light yellow; 726 I0(hkl), R = 4.4%, Rw = 2.8%; a = 1 102.0(6), c = 637.9(5) pm; Z = 2; space group I4/m; 2 CsO0.55 + Li4TlO4 + glas (560°C, 15 d). CsKNa2Li8{Li[SiO4]}4: tetragonally prismatic crystals, light yellow; 727 I0(hkl), R = 4.4%, Rw = 2.6%; a = 1 103.5(7), c = 637.7(4) pm; Z = 2; space group I4/m; 1.1 CsO0.61 + 1.1 KO0.55 + 1.4 NaO0.52 + 6.5 Li2O + 4 SiO2 (600°C, 60 d). RbNa3Li8{Li[SiO4]}4: tetragonally prismatic crystals, colourless; 600 I0(hkl), R = 2.3%, Rw = 2.0%; a = 1 092.08(6), c = 632.76(4) pm; Z = 2; space group I4/m; 4 RbO0.57 + 3 NaO0.52 + 6.5 Li2O + 4 SiO2 (650°C, 63 d). RbNaLi4{Li[SiO4]}2: monoclinic, ball-shaped, colourless; 1 224 I0(hkl), R = 3.1%, Rw = 3.1%; a = 1 573.10(13), b = 630.48(5), c = 781.25(8) pm, b = 90.566(8)°; Z = 4; space group C2/m; 1.1 RbO0.52 + 1.2 NaO0.45 + 5 Li2O + 4 SiO2 (700°C, 40 d).  相似文献   

16.
Concentrated aqueous solutions of strontium chloride and barium chloride, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4·H2O, the isolation of the earth alkaline salts SrC4S4·4 H2O ( 1 ) and Ba4K2(C4S4)5·16 H2O ( 2 ), both as dark red crystals. The crystal structure determinations ( 1 : orthorhombic, Pnma, a = 8.149(1), b = 12.907(2), c = 10.790(2) Å, Z = 4; 2 : orthorhombic, Pbca, a = 15.875(3), b = 21.325(5), c = 16.119(1) Å, Z = 4) show the presence of C4S42− ions with only slightly distorted D4h symmetry having average C–C and C–S bond lengths of 1.41Å and 1.681Å for 1 and 1.450Å and 1.657Å for 2 . The structure of 1 contains concatenated edge‐sharing Sr(H2O)6S2 polyhedra. The Sr2+ ions are in eight‐fold coordination with Sr–O distances of 2.50–2.72Å and Sr–S distances of 3.21Å, (C4S4)2− acts as a chelating ligand towards Sr2+. The structure is closely related to the previously reported Ca2+ containing analogue, which is of lower symmetry belonging to the monoclinic crystal system. A supergroup‐subgroup relation between the space groups of both structures is present. The structure of 2 is made up of Ba2+ and K+ ions in eight and nine‐fold coordination by H2O molecules and (C4S4)2− ions which act as chelating ligands towards one cation and bridging between two cations. The coordination polyhedra of the cations are connected by common edges and corners in two dimensions to layers which are connected by tetrathiosquarate ions to a three‐dimensional network. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

17.
[Me4N]10[Fe4(OH)4(PW10O37)2] · 15H2O was synthesized by the reaction of FeCl3 ·6H2O, with △-Na8HPW9O34 and Me4NBr. Crystal data: M = 6225.75, space group P21/c with the monoclinic parameters: a = 1.3228(5), b = 3.5634(3), c = 1.5226(2) nm, β = 94.20(2)°, V = 7.1576nm3, 7 = 2,DC = 2.888 g/cm3, Mo Kαradiation (λ = 0.071069 nm), μ= 168.534 cm-1, F(000)=5576, final R = 0.0428 and Rw = 0.1204 for 7086 observed reflections with I > 2σ( I) . The structure of the title compound is the first structurally characterized heteropolymetalate with hydroxo-bridging metal aggregation Fe4OH4 encapsulated in the dimer of Keggin polyoxoanion.  相似文献   

18.
A series of 4d/4f-polyarsenides, -polyarsines and -polystibines was obtained by reduction of the Mo-pnictide precursor complexes [{CptMo(CO)2}2(μ,η2:2-E2)] (E=As, Sb; Cpt=tBu substituted cyclopentadienyl) with two different divalent samarocenes [Cp*2Sm] and [(CpMe4nPr)2Sm]. For the reductive conversion of the Mo-stibide only one product was isolated, featuring a planar tetrastibacyclobutadiene moiety as an unprecedented ligand for organometallic compounds. For the corresponding Mo-arsenide a tetraarsacyclobutadiene and a second species with a side-on coordinated As22− anion was isolated. The latter can be considered as reaction intermediate for the formation of the tetraarsacyclobutadiene.  相似文献   

19.
Summary Reaction of [NH4]2[WS4] with CuX (X = Cl or I) and R4NX (R = Et or n-Bu) in the solid state gave two new bimetallic compounds with W:Cu compositions from 1:3 to 1:4. Compound (1), [(n-Bu)4N]3[WS4Cu3Cl3Br], crystallizes in the hexagonal space group R3c with a = 17.051(5), c = 38.372(5) Å, V = 9661.8 Å3, Z = 6. The cluster anion of (1) comprises a cubane-like cluster core [WS3Cu3Br] of C3 symmetry with a Cl atom attached to each of the three Cu atoms and one terminal sulphido ligand attached to the W atom. Compound (2), [Et4N]4[WS4Cu4I6], crystallizes in the monoclinic space group C2/m with a = 29.702(6), b = 12.7887(5), c = 15.327(3)Å, = 99.69(2), V = 5738.1 Å3, Z = 4. In the cluster anion of (2), four edges of the WS4 core are coordinated by four Cu atoms, giving a WS4Cu4 aggregate of approximate C2V symmetry.  相似文献   

20.
Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of cis -(Et4N)[OsF2Cl4] and trans -(Ph4P)[OsF2Cl4] By oxidation of the pure fluorochloroosmates(IV) with KBrF4 or PbO2/trifluoracetic acid in dichloromethane the mixed pentavalent complex anions cis-[OsF2Cl4] and trans-[OsF2Cl4] are formed. X-ray structure determinations on single crystals have been performed of cis-(Et4N) · [OsF2Cl4] ( 1 ) (monoclinic, space group P21/n, a = 7.519(2), b = 17.648(2), c = 11.942(4) Å, β = 105.98(2)°, Z = 4) and trans-(Ph4P)[OsF2Cl4] ( 2 ) (tetragonal, space group P4/n, a = 12.677(2), c = 7.743(1) Å, Z = 2). Based on the molecular parameters of the X-ray determinations and assuming C2v point symmetry for the anion of 1 and D4h point symmetry for the anion of 2 the IR and Raman spectra have been assigned by normal coordinate analysis. Due to the stronger trans influence of chlorine as compared with fluorine for F · –Os–Cl′ axes significally different valence force constants are observed in comparison with symmetrically coordinated axes: fd(OsF · ) = 3.35, fd(OsF) = 3.73, fd(OsCl′) = 2.05 and fd(OsCl) with 1.98 and 2.00 mdyn/Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号