首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polycondensation of diesters having hydroxyl or pyridine groups was carried out with hexamethylenediamine (HMD) in the presence of (vinyl alcohol/vinyl acetate) copolymers as a matrix polymer. Apparent rates of the polycondensation of dimethyl tartrate (DMT) with HMD increased with increasing contents of PVA units in the copolymers and a strong entanglement between growing polyamide chains and PVA copolymers took place through the adsorption of HMD and DMT on the matrix copolymers. 2,6-Dimethyl pyridine dicarboxylate (2,6-DMP) reacted with HMD in the presence of the PVA copolymers or polysaccharide, while the rate enhancement effect of the matrix polymers was not significantly observed, as in the case of DMT. The effect of the matrix polymers on the polycondensation was discussed in terms of hydrogen bonding interactions.  相似文献   

2.
Polycondensation reactions of hydroxyl diesters such as dimethyl tartrate (DMT) and diethyl mucate (DEM) with hexamethylenediamine (HMD) were carried out in the presence of poly(vinyl pyridine) (P-VPy) and its copolymers with styrene of different compositions as matrix polymers in order to investigate the difference in interaction forces with monomers or the resulting polyamides owing to hydrogen bonding. It was found that matrix effects of poly(4-vinyl pyridine) (P-4VPy) on the rate enhancement and solution viscosity of the resulting polyamide became more pronounced with decreasing solvent polarity. This result suggests that the matrix effects of P-4VPy on polycondensation are due to hydrogen bonding interactions between hydroxyl diesters and P-4VPy. The addition of P-4VPy increased the molecular weight of the resulting polyamide to a higher extent than poly(2-vinyl pyridine) (P-2VPy), and the molecular weight of the resulting polyamide could be controlled according to the molecular weight of P-4VPy. Copolymer composition of 4-vinyl pyridine–styrene (4VPy/St) copolymers as matrix polymers also affected the molecular weight of the polyamide, which increased with increasing P-4VPy unit contents in the copolymers.  相似文献   

3.
Polyfunctional linear poly[(sodiumoxy)methylsilsesquioxanes] are obtained via the hydrolytic polycondensation of sodiumoxymethyl(dialkoxy)silanes. Blocking of sodiumoxy groups with vinyl(dimethyl)chlorosilane is employed to obtain vinyl(dimethyl)siloxane replicas of polyfunctional matrices. The linear structure of the polymers is studied by GPC, NMR spectroscopy, and elemental analysis. The specific properties of poly[vinyl(dimethylsiloxy)methylsilsesquioxane] are investigated and are shown to be primarily related to an abnormally dense organization of polymer coils in solutions.  相似文献   

4.
Chloro ethane dimethyl sulfoxide,C_2H_5Cl·DMSO(ECI·DMSO)was prepared by interaction of acrylic acid with conc.Hydrochloric acid in dimethyl sulfoxide(DMSO)and subsequent decarboxylation with H_2O_2 solution.The formation of the compound was confirmed by spectral and analytical methods;the molecular weight was determined by cryoscopic method.The solubility of poly(vinyl alcohol)(PVA)in different solvents or mixed solvents at 40℃,50℃and 60℃temperature in the presence of 0.01% of EC1·-DMSO was determined.It...  相似文献   

5.
Side‐chain pyrene functional poly(vinyl alcohol) (PVA) was synthesized by using “click chemistry” strategy. First, partial tosylation of PVA with p‐toluene sulfonyl chloride were performed. The resulting PVA‐Ts polymer was then quantitatively converted into poly(vinyl alcohol)‐azide (PVA‐N3) in the presence of NaN3/DMF at 60 °C. Propargyl pyrene was prepared independently as a photoactive click component. Finally, azido functionalized PVA was coupled to propargyl pyrene with high efficiency by click chemistry. Incorporation of pyrene functionality in the resulting polymer was confirmed by spectral analysis. It is also shown that pyrene functionalized PVA (PVA‐Py) exhibited characteristic fluorescence properties and improved solubility in highly polar solvents such as water, DMSO, and DMF as well as less polar solvent such as THF compared with pristine PVA. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1317–1326, 2009  相似文献   

6.
The solution polymerization of vinyl acetate was carried out in several solvents at 0 to 100°C, using 2,2′-azobisisobutyronitrile as initiator. For the resulting poly(vinyl alcohol) (PVA), iodinecoloration, 1,2-glycol structure and tacticity were observed. The pentad tacticity of PVA was estimated from its methine carbon spectra by means of 13C-FTNMR spectrometer. Iodine-coloration ability of PVA varied markedly with the type of polymerization solvent and decreased in the following order: phenol > aq. phenol > methyl alcohol > ethyl acetate > DMSO, ethylene carbonate. The syndiotactic fraction in PVA also decreased with polymerization solvent in the same order as that of iodine coloration, while 1,2-glycol content of PVA was not almost affected by polymerization solvent except for phenol and aq. phenol. In solution polymerization performed, effect of polymerization temperature on tacticity was less than that of solvent.  相似文献   

7.
We report here a successful free-radical dispersion polymerization of vinyl pivalate (VPi) in an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][TFSI]) using poly(vinyl pyrrolidone) (PVP) as a stabilizer. Morphological analysis by FE-SEM revealed that poly(vinyl pivalate) (PVPi) obtained from dispersion polymerizations were in the form of spherical particles. Micron-sized, PVPi particles with a number-average molecular weight (Mn) of 166,400 g/mol could be obtained using 5% stabilizer (w/w to monomer) at 65 °C for 20 h. The effects of varying concentration of stabilizer, initiator and monomer upon polymer yield, molecular weight, and morphology of PVPi were also investigated. Analogous polymerizations in dimethyl sulfoxide (DMSO) and bulk served as references. In addition, the preparation of poly(vinyl alcohol) (PVA) by saponification of the resultant PVPi was described.  相似文献   

8.
Gel spinning of poly(vinyl alcohol) (PVA) was attempted from the PVA dope prepared from the mixture of dimethyl sulfoxide (DMSO) and water. The DMSO/H2O = 80/20 (w/w) mixture and methanol were found to be the best solvent for the spinning dope and the coagulant, respectively, to give PVA fiber with the highest drawability. PVA fiber with the highest strength and Young's modulus were obtained from the undrawn gel fibers when subjected to hot two-stage drawing under conditions such as to produce maximum drawability. Furthermore, higher draw ratios of PVA fiber were attained at 6 wt % dope by lowering the coagulating temperature of methanol. In the present work, the highest tensile strength (2.8 GPa) and the highest Young's modulus (64 GPa) were realized, when the spinning dope was prepared from PVA with DP of 5,000 and the DMSO/H2O (80/20) mixed solvent to have the PVA concentration of 6 wt %, the coagulating temperature of methanol was ?20°C, and the two-stage drawing was carried out at 160 (first) and 200°C (second). The PVA fiber prepared under this gel spinning condition could be elongated to 45 times draw ratio. The very high drawability of PVA fibers obtained from the DMSO/H2O (80/20) mixture dope was ascribed to the ability of the DMSO/H2O mixture to promote gelation. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Poly(vinyl alcohol) (PVA) cryogels (PVACGs) are obtained and studied. The PVACGs are formed by freezing–defrosting of polymer solutions in dimethyl sulfoxide (DMSO) or its mixtures with one of the first members of the series low-molecular-mass aliphatic alcohols (methanol, ethanol, n-propanol, and n-butanol). PVA content in these solutions is 100 g/L, while the concentration of an aliphatic alcohol is varied in a range of 0.44–2.55 mol/L depending on its nature. The polymer solutions are subjected to the cryogenic treatment at temperatures 30, 40, or 50°C lower than the crystallization temperature of DMSO (+18.4°C). The frozen samples are defrosted at a heating rate of 0.03°C/min. It is shown that, in a certain range of lowmolecular-mass alcohol content in an initial system, its cryogenic treatment yields coarse-pored heterophase cryogels that have higher rigidity and heat endurance than those of DMSO–PVA cryogels. It has been shown that polymer cryoconcentration and phase separation play important roles in the formation of a cellular microstructure and an increase in the rigidity and heat endurance of PVACGs obtained in the presence of low-molecular-mass alcohols.  相似文献   

10.
The living cationic polymerization of vinyl ethers was carried out with organoaluminum compounds in the presence of various types of esters and ethers (cyclic and acyclic), to find out the suitable added bases available for the living polymerization. The effects of the basicity and steric hindrance of added bases were investigated in detail. On the basis of these results, a fast living polymerization system was realized. To synthesize water-soluble polymers such as thermally-induced phase separating polymers and polyalcohols with well-defined polymer structure, the living polymerization of various vinyl ethers was examined. The aqueous solution of living poly(vinyl ethers) having oxyethylene units exhibited a quite sensitive (ΔTps=0.3–0.5°C) and reversible phase separation on heating and cooling. The effects of polymer structures (pendant substituent, polymer sequence, molecular weight, and MWD) on the phase separation behavior were investigated. PVA and block copolymers containing PVA units with a narrow MWD were also prepared via living cationic polymerization of vinyl ethers and a deprotection reaction.  相似文献   

11.
Several water‐soluble polymers were used as templates for the in situ polymerization of pyrrole to determine their effect on the generation of nanosized polypyrrole (PPy) particles. The polymers used include: polyvinyl alcohol (PVA), polyethylene oxide (PEO), poly(vinyl butyral), polystyrene sulfonic acid, poly(ethylene‐alt‐maleic anhydride) (PEMA), poly(octadecene‐alt‐maleic anhydride), poly(N‐vinyl pyrrolidone), poly(vinyl butyral‐co‐vinyl alcohol‐co‐vinyl acetate), poly(N‐isopropyl acrylamide), poly(ethylene oxide‐block‐propylene oxide), hydroxypropyl methyl cellulose, and guar gum. The oxidative polymerization of pyrrole was carried out with FeCl3 as an oxidant. The morphology of PPy particles obtained after drying the resulting aqueous dispersions was examined by optical microscopy, and selected samples were further analyzed via atomic force microscopy. Among the template polymers, PVA was the most efficient in generating stable dispersions of PPy nanospheres in water, followed by PEO and PEMA. The average size of PPy nanospheres was in the range of 160 nm and found to depend on the molecular weight and concentration of PVA. Model reactions and kinetics of the polymerization reaction of pyrrole in PVA were carried out by hydrogen 1H NMR spectroscopy using ammonium persulfate as an oxidant. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
To clarify the influence of additives on the grafting phenomenon as well as the particle behavior more precisely, we carried out a model emulsion polymerization of vinyl acetate (VAc) in a 1% aqueous solution with ammonium persulfate (APS) using poly (vinyl alcohol) (PVA) as a protective colloid in the presence of additives. The addition of alcohol to the system remarkably affected the particle formation, especially grafting. This is thought to be attributed to competition between hydrogen abstraction from PVA and alcohol with a sulfate radical. Especially, the addition of acetone to the system decreased grafting to a great extent, resulting in an increase in the particle size together with an increase in the number of polymer molecules in a polymer particle. This result is thought to arise from a combination of electron abstraction from acetone with a sulfate radical and the chain-transfer reaction of the propagation radical with acetone.  相似文献   

13.
Dimethyl L-tartarate underwent polycondensation reaction with hexamethylenediamine in solutions at 30°C to form polyamide having pendent hydroxyl groups. Solvents had a great influence on polymer yields and diglyme, tetrahydrofuran (THF) or dimethylsulfoxide (DMSO) were favorable in respect of polymer yields. Solution viscosities of resulting polyamide were as low as 0.1 to 0.2. However, post-polycondensation of the precursor polyamide at solid phase yielded hydrophilic polyamide having film-forming ability. The polyamide decomposed at 210°C by heating.  相似文献   

14.
Amphiphilic and heterotactic‐rich poly(vinyl alcohol) (PVA) macromonomer, that is, PVA having a phenyl or phenoxyethyl methacrylate unit as the polymerizable end group, was synthesized via the aldol‐type group‐transfer polymerization (aldol‐GTP) technique. Aldol‐GTPs of vinyloxytriethylsilane (VOTES) were carried out in dichloromethane with 4‐methacryloylbenzaldehyde and 4‐(2‐methacryloylethoxy)benzaldehyde as the initiators with various Lewis acids. The polymerizations proceeded smoothly to give silylated PVA macromonomers (number‐average molecular weights: 1.3 × 103–1.96 × 104). Poly(VOTES) was easily desilylated to give heterotactic‐rich PVA macromonomer in good yield. The critical micelle concentration of the PVA macromonomer was determined by surface‐tension measurement. Micellar polymerization of the amphiphilic macromonomer gave comb‐shaped (graft) polymer having PVA side chains effectively (conversion: 80–82%), whereas polymerization in dimethyl sulfoxide (homogeneous state) did not. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4477–4484, 2002  相似文献   

15.
Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.  相似文献   

16.
The degradation of the binary polymer blends, poly(vinyl acetate)/poly(vinyl chloride), poly(vinyl acetate)/poly(vinylidene chloride) and poly(vinyl acetate)/polychloroprene has been studied by using thermal volatilization analysis, thermogravimetry, evolved gas analysis for hydrogen chloride and acetic acid, and spectroscopic methods. For the first two systems named, strong interaction occurs in the degrading blend, but the polychloroprene blends showed no indication of interaction. In the PVA/PVC and PVA/PVDC blends, hydrogen chloride from the chlorinated polymer causes substantial acceleration in the deacetylation of PVA. Acetic acid from PVA destabilizes PVC but has little effect in the case of PVDC because of the widely differing degradation temperatures of PVA and PVDC. The presence of hydrogen chloride during the degradation of PVA results in the formation of longer conjugated sequences, and the regression in sequence length at high extents of deacetylation found for PVA degraded alone is not observed.  相似文献   

17.
IntroductionDimethyl carbonate(DMC) is known to be a novelbuilding block in organic synthesis. As an environmen-tally benign compound and a unique intermediate,DMC has attracted much attention[1,2]. Among the va-rious methods for synthesizing DMC, the tra…  相似文献   

18.
Fibers and films prepared from blends of poly(vinyl alcohol) and poly(acrylic acid) were found to be suitable matrices for the solid-state photoreduction of silver ions in the presence of air. Fast generation of nanometer-sized silver crystallites was observed when fibers of polymer blends crosslinked with dimethyl sulfoxide were irradiated with 350nm light. Optical determinations of the formation kinetics were carried out using thin films of noncrosslinked as well as lightly and heavily crosslinked polymer blends. Small Ag clusters were detected initially, which were stable in the dark but transformed into larger metal particles upon further illumination. Both formation processes occurred only under high light intensity illumination and the kinetic data were inconsistent with monophotonic mechanisms.  相似文献   

19.
Polycondensation of diethyl chelidonate (DEC), which contains an electron-accepting γ-pyrone nucleus, with hexamethylenediamine (HMD) takes place easily even at room temperature to form a corresponding polyamide. Since DEC was expected to form a charge transfer complex with an electron-donating compound such as polyvinylcarbazole (PVK), the polycondensation of DEC with diamines was carried out in the presence of PVK as a matrix. It was found that the rate of the polycondensation of DEC with diamines in dioxane was enhanced either by the presence of PVK or by the irradiation with ultraviolet (UV) light. Moreover, the polycondensation of DEC with HMD in the presence of PVK was accelerated by the UV irradiation, probably owing to the transfer of light energy.  相似文献   

20.
The thermal degradation of poly(vinyl acetate) (PVA), poly(vinyl alcohol) (PVAL), vinyl acetate-vinyl alcohol (VAVAL), vinyl acetate-vinyl-3,5-dinitrobenzoate (VAVDNB) and vinyl alcohol-3,5-dinitrobenzoate (VALVDNB) copolymers have been studied using differential thermal analysis (DTA) and thermogravimetry (TG) under isothermal and dynamic conditions in nitrogen. Thermal analysis indicates that PVA and PVAL are thermally more stable than VAVAL copolymers, being PVAL the most stable polymer. The presence of small amounts of vinyl-3,5-dinitrobenzoate (VDNB) in PVA or PVAL produces a marked decrease in the thermal stability of both homopolymers, being VALVDNB copolymers the less stable materials. The apparent activation energy of the degradative process was determined by the Kissinger and Flynn-Wall methods which agree well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号