首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The kinetics of the anionic polymerization of octamethylcyclotetrasiloxane (D4) initiated by α-methylstyrene living polymer in tetrahydrofuran was studied. The following kinetic scheme was postulated: Initiation: Propagation: where S- and M represent the initiator and D4, respectively. At a living end concentration of 0.0377 mole/l. and a monomer concentration of 1.5 mole/l. in tetrahydrofuran at 25°C. the following kinetic data were obtained: k1 = 2.3 × 10?4 l./mole-sec., k2 < 2.3 × 10?5 sec.?1, k3 = 2.75 × 10?2l./mole-sec. k4 ≈ 1.17 × 10?2 sec.?1, K1 > 10 l./mole and K2 ≈ 2.35 l./mole. The rate constants k1 and k3 were found to be dependent on the concentration of anions. This is attributed to the dissociation of ion pairs to free ions at lower concentration. Under the experimental conditions studied the majority of the anions were present in the form of ion pairs. The reactivity of the free ions is about 100 times greater than that of ion pairs. There is no temperature effect on K2, indicating zero ΔH and positive ΔS in the propagation reaction.  相似文献   

2.
n-C3H7ONO was photolyzed with 366 nm radiation at ?26, ?3, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yields of C2H5CHO, C2H5ONO, and CH3CHO were measured as a function of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.38 ± 0.04 independent of temperature. The n-C3H7O radicals can react with NO by two routes The n-C3H7O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.0 ± 0.2) × 1014, (3.1 ± 0.6) × 1014, and (1.4 ± 0.1) × 1015 molec/cm3 at 55, 88, and 120°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?26 to 88°C. They fit the Arrhenius expression: For k2 ? 4.4 × 10?11 cm3/s, k6 becomes (2.9 ± 1.7) × 10?13 exp{?(879 ± 117)/T} cm3/s. The reaction scheme also provides k4b/k6 = 1.58 × 1018 molec/cm3 at 120°C and k8a/k8 = 0.56 ± 0.24 independent of temperature, where   相似文献   

3.
The kinetics of dimethyl sulfoxide (DMSO) oxidation by peroxomonophosphoric acid (PMPA) in aqueous medium at 308 K and I = 0.4 mol/dm3 follow the rate expressions In the pH range from 0 to 2, where k1 and k2 are 5.092 × 10?1 dm3/mol sec and ? 0, respectively; in the pH range from 4 to 7, where k2 = 8.127 × 10?3 and k3 = 2.90 × 10?3 dm3/mol sec; and in the pH range from 10 to 13.6, where k4 ? 0, and k5 = 3.08 × 10?2 dm3/mol sec. The reaction is interpreted in terms of mechanisms involving an electrophilic and a nucleophilic attack of the peroxomonophosphoric acid species, respectively, in acid and alkaline regions, on the sulfur atom of the sulfoxide molecule giving rise to S-type transition states followed by oxygen-oxygen bond fission to form the products.  相似文献   

4.
The kinetics of the reversible reaction have been studied spectrophotometrically in acid solution under conditions in which both the forward and reverse reactions go to virtual completionand in which the reaction comes to a practical equlibrium. The rates of theforward (Rf) and reverse (Rr) reactions are given by where f, g, h, u, and v have the values (4 ± 1) × 10?5 mole/1.·s, (4.2 ± 0.2) × 10?5 mole2/1.2·s, (5.0 · 0.3) × 10?7 mole3/1.3·s, (1.1 ± 0.1) × 10?3 1.2/mole2·s, and (3.7 ± 0.2) × 10?3 1.3/mole3·s at 298.2°K and at an ionic strength of 2.00M maintained by adding sodium chloride. The stoichiometric equilibrium constant under similar conditions is 0.022 ± 0.003. Differentvalues of these parameters were obtained when sodium perchlorate and sodiumnitrate were used to control ionic strength. The results are compared with those from previous reports and a mechanism is proposed based upon an initial rapid equilibrium followed by a rate-determining attack of water upon H3AsO3I+, H2AsO3I, and HAsO3I?.  相似文献   

5.
The mechanism of NH3 pyrolysis was investigated over a wide range of conditions behind reflected shock waves. Quantitative time-history measurements of the species NH and NH2 were made using narrow-linewidth laser absorption. These records were used to establish an improved model mechanism for ammonia pyrolysis. The risetime and peak concentrations of NH and NH2 in this experimental database have also been summarized graphically. Rate coefficients for several reactions which influence the NH and NH2 profiles were fitted in the temperature range 2200 K to 2800 K. The reaction and the corresponding best fit rate coefficients are as follows: with a rate coefficient of 4.0 × 1013 exp(?3650/RT) cm3 mol?1 s?1, with a rate coefficient of 1.5 × 1015T?0.5 cm3 mol?1 s?1 and with a rate coefficient of 5.0 × 1013 exp(?10000/RT) cm3 mol?1 s?1. The uncertainty in rate coefficient magnitude in each case is estimated to be ±50%. The temperature dependences of these rate coefficients are based on previous estimates. The experimental data from four earlier measurements of the dissociation reaction were reanalyzed in light of recent data for the rate of NH3 + H → NH21 + H2, and an improved rate coefficient of 2.2 × 1016 exp(?93470/RT) cm3 mol?1 s?1 in the temperature range 1740 to 3300 K was obtained. The uncertainty in the rate coefficient magnitude is estimated to be ± 15%.  相似文献   

6.
Poly(acrylonitrile‐co‐itaconic acid) (poly(AN‐co‐IA)) precursor required for carbon fiber production is made into a dope and spun into fibers using a suitable spinning technique. The viscosity of the resin dope is decided by the polymer concentration, polymer molecular weight, temperature, and shear force. The shear rheology of concentrated poly(AN‐co‐IA) polymer solutions in N,N‐dimethylformamide (DMF), in the range of 1 × 105–1 × 106 g mol?1, has been investigated in the shear rate (γ′) range of 1 × 101–5 × 104 min?1. The zero shear viscosity (η0) has been evaluated at different temperatures. The temperature dependence of zero shear viscosity conformed to the Arrhenius–Frenkel–Eyring model. The free energy of activation of viscous flow (ΔGV) values were in the range 5–32 kJ mol?1 and this value increased with increase in polymer concentration and molecular weight. A master equation for the ΔGV value of the polymer solution of any and concentration (c) is suggested. The power law fitted well for the shear dependency of viscosity of these polymer solutions. The pseudoplasticity index (n) diminished with increase in polymer concentration and molecular weight. An empirical relation between viscosity (η) and was found to exist at constant shear rate, concentration and temperature. For each , the equation relating n, c, and T was established. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Using the technique of molecular modulation spectrometry, we have measured directly the rate constants of several reactions involved in the oxidation of methyl radicals at room temperature: k1 is in the fall-off pressure regime at our experimental pressures (20–760 torr) where the order lies between second and third and we obtain an estimate for the second-orderlimit of (1.2 ± 0.6) × 10?12 cm3/molec · sec, together with third-order rate constants of (3.1 ± 0.8) × 10?31 cm6/molec2 · sec with N2 as third body and (1.5 ± 0.8) × 10?30 with neopentane; we cannot differentiate between k2a and k2c and we conclude k2a + (k2c) = (3.05 ± 0.8) × 10?13 cm3/molec · sec and k2b = (1.6 ± 0.4) × 10?13 cm3/molec · sec; k3 = (6.0 ± 1.0) × 10?11 cm3/molec · sec.  相似文献   

8.
The kinetics of the oxidation of iodide by hydrogen peroxide catalyzed by acidic molybdate have been studied by a spectrophotometric stopped-flow method. The results are interpreted in terms of the mechanism and the implied rate law where [mol] is total analytical concentration of molybdate. The values obtained for the rate and equilibrium constants are k4 = (3.3 ± 1) × 102 1./mole · s, K1 = (1.2 ± 0.6) × 104 1./mole, K2 = (1.3 ± 0.7) × 103 1./mole, and K3 = (4 ± 3) × 102 1./mole at 298°K.  相似文献   

9.
According to our experiments the bromide ion concentration exhibits in the bromate–ascorbic acid–malonic acid–perchloric acid system three extrema as a function of time. To describe this peculiar phenomenon, the kinetics of four component reactions have been studied separately. The following rate equations were obtained: Bromate–ascorbic acid reaction: Bromate–bromide ion reaction: Bromide–ascorbic acid reaction: Bromine–malonic acid reaction: k4 = 6 × 10?3 s?1, k-4 ≥ 1.7 × 103 s?1, k5 ≥ 1 × 107M?1 · s?1 Taking into account the stoichiometry of the component reactions and using these rate equations, the concentration versus time curves of the composite system were calculated. Although the agreement is not as good as in the case of the component reactions, it is remarkable that this kinetic structure exhibits the three extrema found.  相似文献   

10.
Poly-ε-caprolactone prepared by a dibutylzinc-catalyzed bulk polymerization process was fractionated, and the solution properties of the fractions were studied in benzene and in dimethylformamide. In these solvents at 30°C the Mark-Houwink relations were [η] = 9.94 × 10?5 M and [η] = 1.91 × 10?4 M , respectively. The value of KΘ was found to vary from 1.1 to 1.2 × 10?3 when determined by three known extrapolation techniques. Poly-ε-caprolactone chains appear to be quite flexible in solution, and the steric hindrance parameter σ had the low value of 1.37. Root-mean-square end-to-end dimensions were approximated from the experimental data and calculated from the Debye-Bueche and the Kirkwood-Riseman theories.  相似文献   

11.
Pulsed laser photolysis of O3 in a large excess of N2 has been used to generate O(3P) atoms in the presence of OCS. By observing chemiluminescence from the small fraction of electronically excited SO2 formed in the reaction of SO with O3, rate constants of (1.7 ± 0.2) × 10?14 and (8.7 ± 1.6) × 10?14 cm3/molecule sec have been determined at 296 ± 4 K for the reactions and In addition, it has been shown that any reaction between SO and OCS has a rate constant 10?14 cm3/molecule sec.  相似文献   

12.
The kinetics and mechanism of ascorbic acid (DH2) oxidation have been studied under anaerobic conditions in the presence of Cu2+ ions. At 10?4 ≤ [Cu2+]0 < 10?3M, 10?3 ≤ [DH2]0 < 10?2M, 10?2 ≤ [H2O2] ≤ 0.1M, 3 ≤ pH < 4, the following expression for the initial rate of ascorbic acid oxidation was obtained: where χ2 (25°C) = (6.5 ± 0.6) × 10?3 sec?1. The effective activation energy is E2 = 25 ± 1 kcal/mol. The chain mechanism of the reaction was established by addition of Cu+ acceptors (allyl alcohol and acetonitrile). The rate of the catalytic reaction is related to the rate of Cu+ initiation in the Cu2+ reaction with ascorbic acid by the expression where C is a function of pH and of H2O2 concentration. The rate equation where k1(25°C) = (5.3 ± 1) × 103M?1 sec?1 is true for the steady-state catalytic reaction. The Cu+ ion and a species, which undergoes acid–base and unimolecular conversions at the chain propagation step, are involved in quadratic chain termination. Ethanol and terbutanol do not affect the rate of the chain reaction at concentrations up to ≈0.3M. When the Cu2+–DH2–H2O2 system is irradiated with UV light (λ = 313 nm), the rate of ascorbic acid oxidation increases by the value of the rate of the photochemical reaction in the absence of the catalyst. Hydroxyl radicals are not formed during the interaction of Cu+ with H2O2, and the chain mechanism of catalytic oxidation of ascorbic acid is quantitatively described by the following scheme. Initiation: Propagation: Termination:   相似文献   

13.
i-C4H9ONO was photolyzed with 366-nm radiation at ?8, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yield of i-C3H7CHO, Φ{i-C3H7CHO}, was measured as a function of reaction of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.24 ± 0.02 independent of temperature. The i-C4H9O radicals can react with NO by two routes The i-C4H9O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.8 ± 0.6) × 1014, (1.7 ± 0.2) × 1015, and (3.5 ± 1.3) × 1015 molec/cm3 at 23 55, and 88°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?8 to 120°C. They fit the Arrhenius expression: For k2 ? 4.4 × 1011 cm3/s, k6 becomes (3.2 ± 2.0) × 10?13 exp{?(836 ± 159)/T} cm3/s. The reaction scheme also provides k4b/k6 = 3.59 × 1018 and 5.17 × 1018 molec/cm3 at 55 and 88°C, respectively, and k8b/k8 = 0.66 ± 0.12 independent of temperature, where   相似文献   

14.
The redox system of potassium persulfate–thiomalic acid (I1–I2) was used to initiate the polymerization of acrylamide (M) in aqueous medium. For 20–30% conversion the rate equation is where Rp is the rate of polymerization. Activation energy is 8.34 kcal deg?1 mole?1 in the investigated range of temperature 25–45°C. Mn is directly proportional to [M] and inversely to [I1]. The range of concentrations for which these observations hold at 35°C and pH 4.2 are [I1] = (1.0–3.0) × 10?3, [I2] = (3.0–7.5) × 10?3, and [M] = 5.0 × 10?2–3.0 × 10?1 mole/liter.  相似文献   

15.
The kinetics and mechanism of the following reactions have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium, using the discharge‐flow mass spectrometric method: 1a : (1a) 1b : (1b) The following Arrhenius expression for the total rate constant was obtained from the kinetics of OH consumption in excess of ClO radical, produced in the Cl + O3 reaction either in excess of Cl atoms or ozone: k1 = (6.7 ± 1.8) × 10?12 exp {(360 ± 90)/T} cm3 molecule?1 s?1 (with k1 = (2.2 ± 0.4) × 10?11 cm3 molecule?1 s?1 at T = 298 K), where uncertainties represent 95% confidence limits and include estimated systematic errors. The value of k1 is compared with those from previous studies and current recommendations. HCl was detected as a minor product of reaction (1) and the rate constant for the channel forming HCl (reaction (1b)) has been determined from the kinetics of HCl formation at T = 230–320 K: k1b = (9.7 ± 4.1) × 10?14 exp{(600 ± 120)/T} cm3 molecule?1 s?1 (with k1b = (7.3 ± 2.2) × 10?13 cm3 molecule?1 s?1 and k1b/k1 = 0.035 ± 0.010 at T = 298 K), where uncertainties represent 95% confidence limits. In addition, the measured kinetic data were used to derive the enthalpy of formation of HO2 radicals: Δ Hf,298(HO2) = 3.0 ± 0.4 kcal mol?1. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 587–599, 2001  相似文献   

16.
The method of molecular-modulation spectrometry for studying photochemical reactions has been applied to methyl nitrite photolysis. The infrared absorption of the nitroxyl radical HNO has been observed in the gas phase at 3300 cm?1. Under the present experimental conditions the steady-state concentration of HNO under steady illumination was 1.1 × 1012 particles/cc, and the observed modulation amplitude was 4.5 × 1010 particles/cc. At 25°C and 1 atm of nitrogen, the cross section for infrared absorption by HNO at 3300 cm?1 is 1.7 × 10?19 cm2. The rate constant ratio b/c was found to be 8.0. From the literature value of the rate constant d , the observed rate constant for the reaction is e = (5 ± 1) × 10?11 cc/particle sec.  相似文献   

17.
The effect of H2 on propylene polymerization initiated by a MgCl2/EB/PC/AlEt3/TiCl4–3 AlEt3/MPT catalyst was studied. Hydrogen increases significantly the initial rate during the early stage of the polymerization to give a higher yield of polymer than reactions without H2. But H2 reduces the yield toward the latter stages so that the net effect on the total yield can be quite small. There is no appreciable effect of H2 on either the isotacticity index or polydispersity of the products. It decreases molecular weight proportional to (pH2)1/2. The chain transfer by H2 resulted in a decrease of total metal polymer bond concentration with time of polymerization. The rate constants of hydrogen chain transfer for the two kinds of isospecific and nonspecific sites are = 5.1 × 10?3, = 2.7 × 10?3, = 7.5 × 10?3, = 4.4 × 10?3, in units of torr1/2 sec?1 at 50°. Hydrogen assists in the deactivation of the catalytic sites as does propylene; rates of the former and the latter vary with (pH2)1/2 and [C3H6]1/2, respectively, with k = (12.1 ± 0.9) M?1 torr?1/2 sec?1 and k = (65.3 ± 3.3) M?3/2 sec?1 at 50° and A/T = 167. The mechanism for deactivation of catalytic sites are discussed.  相似文献   

18.
The thermal gas-phase decomposition of vinyl chloride has been studied behind shock waves over the temperature range of 1350-1900°K and the density range of 7 × 10?7-1.5 × 10?3 mol/cm3 (at 1600°K) in mixtures of C2H3Cl highly diluted with argon. The ultraviolet absorption of C2H3C was recorded at 230 nm as a function of time. The decomposition proceeds via molecular elimination of HCl. The unimolecular dissociation rate is pressure dependent at all but the highest pressures applied. Application of modified HKRR theory results in the rate expression for the limiting high pressure rate constant, and in a collision efficiency of derived from the limiting low-pressure rate constant.  相似文献   

19.
Complex dynamical behavior has been observed in the oxidation of hydroxylamine by bromate in acidic sulfate medium. The reaction shows clock type kinetics in closed conditions and an aperiodic oscillations if gaseous products are removed from the system with a constant flow-rate. The reduction kinetics of bromate ions with excess hydroxylamine has been studied in the presence of allyl alcohol. The observed pseudo-first-order rate constant kobs has been found to follow the expression where [hydroxylamine] is total initial hydroxylamine concentration, K1 = 0.5 M?1, K2 = 106 M?1, and k = 2.57 × 103 M?1 s?1 at 298.15 K and I = 2.0 M. The rate constant for the bromine oxidation of hydroxylamine in sulfuric aqueous solution has been determined. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Kinetic and thermodynamic data for reaction (1) of certain C-centered aromatic radicals (referred to in this paper by the numbers I to X) in chlorobenzene: have been obtained. The k1 values of radicals varied between (1.1 ± 0.2) × 106M?1·sec?1 (radical VIII) and (3.6 ± 0.7) × 109M?1 sec?1 (radical VI) at 20°C. An investigation of the relationship between the recombination rates of radicals I–VIII and X and the solvent viscosity (mixture of toluene and dibutylphthalate, 0.6 < η < 18.4 cP) has shown that the recombination reactions involving radicals I–IV are limited by diffusion in solvents having a viscosity η> 10 cP and are activation reactions in solvents having a viscosity η < 10 cP. The recombination of radicals VIII and IX is an activation reaction, while that of radicals V–VII is diffusion-controlled in the entire viscosity range. The recombination of radical X is limited, in the viscosity range of 18.4 to 2 cP, by intrusion into the first coordination sphere of the partner, the effect of viscosity on the radical X recombination rate in the specified range being the same as its effect on diffusion-controlled reactions. The possible reasons of the discrepancies between the experimental fast recombination rate constants and the theoretical values calculated by the Debye–Smoluchowski theory are discussed. The equilibrium constant depends strongly on the nature of the substituent in the phenyl fragment: the substituents which increase unpaired electron delocalization in the radical intensify the dissociation of the respective dimer. Long-wave absorption bands have been recorded for radicals I–X and their extinction coefficients obtained. Dimers I–V are thermo- and photochromic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号