首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doubly charged ion mass spectra of 22 amines (2–10 carbon atoms) were determined using an Hitachi RMU-7L double focusing mass spectrometer. Molecular ions were not observed in the spectra of aliphatic amines. The most intense product ion peaks in the spectra of lower molecular weight amines resulted from hydrogen elimination from the molecular ion; however, as amine molecular weight increased the largest peaks resulted from both hydrogen and heavy atom elimination from the molecular ion. Dominant ions in the doubly charged ion spectra of lower molecular weight aliphatic amines were from reactions of [CnH3N]2+ (n:=2, 3, 4) type ions. The spectra of higher molecular weight aliphatic amines spanned a wide mass range. Appearance energies for some of the more prominent ions were measured in the range from 25 to 49 eV. A geometry optimized quantum mechanical self-consistent field molecular orbital treatment was used to compute the energies and structural parameters of prominent ions in the doubly charged ion mass spectra.  相似文献   

2.
The positive ion mass spectra of several chromium(III) β-diketonates with aliphatic α-substituents have been investigated. Metastable peaks in the spectra confirm that ions containing substituents with γ-H atoms undergo propene loss. This implies a McLafferty rearrangement of an open-chain ligand structure. Ethyl radicals are lost from n-butyl substituents; methyl groups are cleaved from the molecular ions of complexes formed from methyl-substituted ligands. The main fragment is, as expected, [ML2]+; however, its further fragmentation is different from that of [ML3]+. Electron donating substituents stabilize doubly charged molecular ions.  相似文献   

3.
Doubly charged ion mass spectra of 23 alkenes have been measured using a double focusing Hitachi RMU-7L mass spectrometer. Ion mass spectra were obtained using 100 eV electron energy and 3.2 kV ion accelerating voltage. Each 2E spectrum was determined using the olefinic compound under investigation as the target gas. In general, spectra are dominated by fragment ions which result from extensive hydrogen loss from the doubly charged molecular ion. Appearnce energies have been measured for intense fragment ions in each spectrum.  相似文献   

4.
The collision‐induced dissociation (CID) and electron‐induced dissociation (EID) spectra of the [(NaCl)m(Na)n]n+ clusters of sodium chloride have been examined in a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer. For singly charged cluster ions (n = 1), mass spectra for CID and EID of the precursor exhibit clear differences, which become more pronounced for the larger cluster ions. Whereas CID yields fewer product ions, EID produces all possible [(NaCl)xNa]+ product ions. In the case of doubly charged cluster ions, EID again leads to a larger variety of product ions. In addition, doubly charged product ions have been observed due to loss of neutral NaCl unit(s). For example, EID of [(NaCl)11(Na)2]2+ leads to formation of [(NaCl)10(Na)2]2+, which appears to be the smallest doubly charged cluster of sodium chloride observed experimentally to date. The most abundant product ions in EID spectra are predominantly magic number cluster ions. Finally, [(NaCl)m(Na)2]+ . radical cations, formed via capture of low‐energy electrons, fragment via the loss of [(NaCl)n(Na)] . radical neutrals. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Doubly charged ion mass spectra have been obtained for 15 n-alkane hydrocarbons. Spectra were measured using a Nier-Johnson geometry Hitachi RMU-7L mass spectrometer operated at 1.6kV accelerating voltage. Fragment ions, which resulted from C? C bond rupture and extensive H loss, dominated the spectra. Molecular ions have not been observed. The most intense ions in the doubly charged ion mass spectra of n-alkanes were [C2H4]2+, [C3H2]2+, [C4H3]2+, [C5H2]2+, [C6H6]2+, [C6H8]2+, [C7H6]2+, [C7H8]2+, [C8H6]2+ and [C8H8]2+. Appearance energies for forming the prominent doubly charged fragment ions have been measured and range from 27.5 eV to energies greater than 60eV. A geometry optimized SCF approach has been used to compute the energies and structures of prominent ions in the doubly charged mass spectra.  相似文献   

6.
Doubly charged ion mass spectra of 20 aliphatic and 3 aromatic acetylenic compounds have been measured using a double focusing Hitachi RMU-7L mass spectrometer. Spectra were obtained using 100 eV ionizing electron energy and 3.2 kV ion accelerating voltage. In general, the spectra of aliphatic type acetylenic compounds were dominated by fragment ions formed by extensive H loss from doubly charged molecular ions. Intense molecular ions were observed in the doubly charged ion spectra of phenyl-substituted acetylenes. Total product ion intensities for doubly charged ion spectra of acetylenic compounds were found to be smaller, in general, than the total product ion intensity observed in the benzene doubly charged ion mass spectrum. Measured appearance energies of intense product ions ranged from 24 to 47 eV. A geometry optimized quantum mechanical self-consistent field molecular orbital treatment was employed to compute energies and structural parameters of prominent ions in the doubly charged ion mass spectra of acetylenic compounds.  相似文献   

7.
Clusters of Ar, Kr, Xe, N2, O2, CO2, SO2 and NH3 formed by supersonic nozzle expansion have been studied by electron impact ionization mass spectrometry (up to 15000 amu). Besides mass spectra of singly charged ions showing the characteristic anomalous distributions, we have in particular investigated the properties of multiply charged cluster ions. Critical appearance sizes of doubly and triply charged cluster ions, n2 and n3 respectively, found in the present study confirm recent theoretical predictions about n3/n2 and their dependence on the properties of the cluster constituents. The appearance energies of multiply charged cluster ions determined are shifted way below the appearance energies of the respective monomer ions. These huge red shifts together with the observed linear threshold laws and large maximum ionization efficiencies indicate that multiply charged cluster ions are produced by sequential single ionization events of one incoming electron at different cluster sites. Furthermore, we have also obtained for the first time clear evidence that (for electron energies above the appearance energy of doubly charged ions) an appreciable amount of singly charged (also fragment) ions is produced via Coulomb explosion of unstable doubly charged ions in the ion source.  相似文献   

8.
Mass spectra of doubly charged mercury clusters (m/z=30-1065) were investigated by secondary ion mass spectrometry. Positively charged ions were generated from an amalgam of mercury and silver by bombardment with a xenon ion beam and mass analysis by a grand-scale sector type mass spectrometer. Hg n 2+, n=1-10 and Hg n +, n =1- 5 were observed. Some doubly charged mercury clusters, (Hg n 2+) survived at least for 0.1 ms.  相似文献   

9.
Electron transfer and capture mass spectra of a series of doubly charged ions that were phosphorylated pentapeptides of a tryptic type (pS,A,A,A,R) showed conspicuous differences in dissociations of charge-reduced ions. Electron transfer from both gaseous cesium atoms at 100 keV kinetic energies and fluoranthene anion radicals in an ion trap resulted in the loss of a hydrogen atom, ammonia, and backbone cleavages forming complete series of sequence z ions. Elimination of phosphoric acid was negligible. In contrast, capture of low-energy electrons by doubly charged ions in a Penning ion trap induced loss of a hydrogen atom followed by elimination of phosphoric acid as the dominant dissociation channel. Backbone dissociations of charge-reduced ions also occurred but were accompanied by extensive fragmentation of the primary products. z-Ions that were terminated with a deaminated phosphoserine radical competitively eliminated phosphoric acid and H2PO4 radicals. A mechanism is proposed for this novel dissociation on the basis of a computational analysis of reaction pathways and transition states. Electronic structure theory calculations in combination with extensive molecular dynamics mapping of the potential energy surface provided structures for the precursor phosphopeptide dications. Electron attachment produces a multitude of low lying electronic states in charge-reduced ions that determine their reactivity in backbone dissociations and H- atom loss. The predominant loss of H atoms in ECD is explained by a distortion of the Rydberg orbital space by the strong dipolar field of the peptide dication framework. The dipolar field steers the incoming electron to preferentially attach to the positively charged arginine side chain to form guanidinium radicals and trigger their dissociations.  相似文献   

10.
Doubly charged ion mass spectra have been obtained for 11 organophosphorus compounds. Methane has been used as a target gas to increase the probability of single electron transfer collisions in the first field-free region of an Hitachi RMU-7L mass spectrometer. In general, the spectra of organophosphorus compounds do not exhibit molecular ions but are dominated by fragment ions, many of which must be formed by rearrangement processes. A geometry-optimized self-consistent field molecular orbital method has been employed to compute energies and structural parameters for prominent ions. In addition, a diabatic curve crossing model has been used to examine the single electron transfer reactions responsible for intense ions in the doubly charged ion mass spectra. Appearance energies measured for ions prominent in the 2E spectra of organophosphorus compounds have ranged from 23 to 38 eV.  相似文献   

11.
Doubly charged ion mass spectra have been obtained for 42 chlorinated and brominated n-alkane (methyl through octyl) hydrocarbons. A double focusing Hitachi RMU-7L mass spectrometer, operated at 1.6kV accelerating voltage, has been used to measure the spectra. Molecular doubly charged ions have not been observed. Intense fragment ions have been produced from extensive H and halogen loss as well as C? C bond rupture of the parent molecule. The most abundant ions in the doubly charged ion spectra observed in this investigation resulted from reactions of [Cl]2+˙, [Br]2+˙, [CCL2]2+, [C2H2Cl]2+˙, [C3H2]2+, [C3HCl]2+, [C3HBr]2+, [C4H3]2+˙, [C4H4]2+, [C4H6Br]2+˙, [C4H8Br]2+˙, [C5H2]2+, [C6H6]2+, [C6H8]2+ and [C7H8]2+. The prominent doubly charged fragment ions formed by electron impact of the smaller halogenated alkanes generally contained halogen, whereas ions of the type [CnHx]2+ were dominant in the spectra of higher molecular weight mono- and dihalogenated alkanes. Appearance energies of several ions have been measured. A geometry optimized quantum mechanical SCF treatment has been used to compute energies, charge densities and structures of doubly charged halogenated alkane ions.  相似文献   

12.
Doubly charged ion mass spectra for 15 aromatic hydrocarbons have been obtained using a Nier-Johnson geometry, Hitachi RMU-7L mass spectrometer operating at 1.6 kV accelerating voltage. The doubly charged ion spectra have features that are characteristic of the individual compounds. Unsaturated aromatic molecules show intense molecular ions in contrast to saturated, substituted or heteroatom compounds which undergo extensive fragmentation. Ionization energies for forming doubly charged molecular ions and appearance energies for the prominent doubly charged fragment ions have been measured. Calculations of the SCF energies and structures of various doubly charged ions have been carried out. Measured and calculated ionization/appearance energies are in reasonable accord and lend support to the suggested ion structures.  相似文献   

13.
Fully resolved mass spectra of carbon monoxide clusters have been recorded in the size rangen≦320. Intensity anomalies in these spectra beyondn=135 are strikingly similar to those being observed in krypton and xenon spectra. Particularly pronounced intensity drops occur atn=147 and 309. For the first time, these data provide evidence for icosahedral structure in largemolecular cluster ions. Concerning doubly charged CO clusters, their lower size limit has been measured to ben c =98.  相似文献   

14.
The mass spectra of biological molecules, whose molecular mass exceeds 10 kDa, invariably contain multiply charged ions. For example, a survey scan of a small protein will produce singly, doubly and triply protonated molecules, the intensity of the doubly charged species often being greater than that of the singly charged entity. Although the spectra resulting from doubly charged peptides have not previously been studied, collisional activation of such doubly charged species may result in significant additional information pertaining to molecular structure. The techniques employed to study ions originating from multiply charged species were linked scanning of constant B/E and tandem mass spectrometry, namely low collision energy spectra acquired on a BEQQ hybrid instrument. The methodology was applied to model compounds whose tandem mass spectrometry characteristics are well known, e.g. gramicidin S and angiotensin I. The results for the product ions of the [M + 2H]2+ species of the models were obtained which highlight the methodology required for high-mass materials.  相似文献   

15.
Doubly charged ion mass spectra were obtained for 46 low molecular weight oxygen containing compounds. A double focusing Hitachi RMU-7L mass spectrometer, operated at 3.2 kV accelerating voltage, was used to measure spectra for aliphatic alcohol, ketone, ether, aldehyde, ester and acid molecules, as well as several aromatic oxygen containing compounds. In general, the spectra were dominated by fragment ions which resulted from extensive H loss and C? C bond rupture as well as O elimination from the doubly charged molecular ions. Total product ion intensities from doubly charged ion spectra of aliphatic oxygen containing compounds were approximately 1% of the corresponding total ion intensity in the benzene doubly charged ion spectrum. Appearance energies for forming prominent doubly charged molecular and fragment ions were determined. Measured values ranged from 26 to 45 eV. A geometry optimized quantum mechanical SCF treatment was used to compute the energies, charge densities and structures for several of these oxygen containing doubly charged ions.  相似文献   

16.
The unimolecular chemistry and structures of self‐assembled complexes containing multiple alkaline‐earth‐metal dications and deprotonated GlyGly ligands are investigated. Singly and doubly charged ions [Mn(GlyGly?H)n‐1]+ (n=2–4), [Mn+1(GlyGly?H)2n]2+ (n=2,4,6), and [M(GlyGly?H)GlyGly]+ were observed. The losses of 132 Da (GlyGly) and 57 Da (determined to be aminoketene) were the major dissociation pathways for singly charged ions. Doubly charged Mg2+ clusters mainly lost GlyGly, whereas those containing Ca2+ or Sr2+ also underwent charge separation. Except for charge separation, no loss of metal cations was observed. Infrared multiple photon dissociation spectra were the most consistent with the computed IR spectra for the lowest energy structures, in which deprotonation occurs at the carboxyl acid groups and all amide and carboxylate oxygen atoms are complexed to the metal cations. The N?H stretch band, observed at 3350 cm?1, is indicative of hydrogen bonding between the amine nitrogen atoms and the amide hydrogen atom. This study represents the first into large self‐assembled multimetallic complexes bound by peptide ligands.  相似文献   

17.
The rearrangement reactions following electron ionization in a number of aryl substituted conjugated nitriles have been studied using labelled compounds and collisional activation (CA) spectroscopy. The results indicate that α-phenyl cinnamonitriles and 9,10-dihydro-9-cyanophenanthrene rearrange to a common intermediate which loses CH3˙ or CH2CN˙ to give the ions at m/z 190 and 165. The CA spectrum of the deuterated analogue (compound 2) shows that there is a complete hydrogen scrambling prior to the loss of the CH3˙ radical. The fluoroderivatives (compounds 5 and 6) behave similarly to the parent nitrile. The introduction of chlorine or bromine into the aromatic ring alters the fragmentation pattern and the only favoured decomposition pathway is the loss of a halogen radical. The CA spectra of the doubly charged ions at m/z 102 and 88 are also discussed. The CA spectrum of the M +˙ ion 1,1-dicyano-2-phenyl ethylene is characterized by the presence of a rearrangement ion atm/z 103 (PhCN+ ˙).  相似文献   

18.
The abundance of ion pairs (CA+) relative to that of doubly charged ions (C2+) in electrohydrodynamic (EH) mass spectra of a series of anions with a common dication in glycerol was found to increase in the order acetate < nitrite < chloride < bromide ≈ nitrate < iodide < perchlorate. Correlation with enthalpies of hydration for the anions suggests that this trend reflects the solution chemistry of ion association. These spectra also reveal that solvation rather than interactions with the extracting field is more important in determining the overall EH mass spectrometric sensitivity to doubly charged ions. Therefore, the use of anions that promote more extensive ion pairing enhances the overall sensitivity to multiply charged ions that otherwise interact strongly with the solvent, but reduces sensitivity to singly charged ions. These observations hold in fast atom bombardment mass spectrometry, surviving the invasive effects of the primary beam.  相似文献   

19.
The distribution of doubly charged ions found in the mass spectra of various N, N′-alkyl substituted phenylenediamines is compared to that of their singly charged counterparts. Structural and electronic requirements for the resonance stabilization of doubly charged organic ions are suggested and it is shown that doubly charged ions could be used to differentiate between certain structural isomers which give practically identical singly charged ions. The doubly charged ions were distinguished from singly charged ions of the same integral m/e value by high resolution techniques.  相似文献   

20.
Charge exchange reactions within a triple quadrupole mass spectrometer characterize doubly charged ions formed in the ion source. Two methods have been developed for identifying the singly charged ions formed from doubly charged ions by charge exchange in the collision quadrupole. The first is based on the characteristically high kinetic energy-to-charge ratios of the products of charge exchange; this property can be used to separate these ions from all other singly charged ions. This retarding potential method is analogous to procedures for recording doubly charged ion mass spectra using sector instruments. The second method is based on the fact that, although mass remains constant in the charge exchange reaction, the change in mass-to-charge ratio can be followed. A charge exchange linked scan, predicated on changes in charge rather than mass, but otherwise analogous to neutral loss/gain scans, is described. Information on the structure of doubly charged ions can be obtained by recording the fragmentation products of dissociative charge exchange. The utility of the charge exchange linked scan for the selective identification of polynuclear aromatic compounds in a complex mixture is described. The methods given can be generalized to cover other charge permutation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号