首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MALDI‐TOF MS characterizations of dihydroxy telechelic polyisobutylene is reported. Dichloro telechelic polyisobutylene (Cl—PIB—Cl) was synthesized by means of living cationic polymerization using p‐dicumyl chloride/BCl3/DMSO initiating systems. The resulting polymer was functionalized by polymer analogous reactions to yield dihydroxy telechelic polyisobutylene (HO—PIB—OH). It was then investigated by MALDI‐TOF MS in the cation mode using 1,8‐dihidroxy‐9(10H)‐anthracenone (dithranol)/CF3COOAg matrix. The MALDI TOF MS spectra showed an increase in mass by 56 amu units attributed to the isobutylene monomer increment. The endgroups of HO—PIB—OH were determined. A good agreement was also found between the calculated isotope distributions and the isotope distributions determined by means of MALDI.  相似文献   

2.
This article describes the synthesis and characterization of polyisobutylene (PIB) carrying one primary hydroxyl head group and a tertiary chloride end group, [Ph? C(CH3)(CH2OH)–PIB–CH2? C(CH3)2Cl] prepared with direct functionalization via initiation. The polymerization of isobutylene was initiated with the α‐methylstyrene epoxide/titanium tetrachloride system. Living conditions were obtained from ?75 to ?50 °C (198–223 K). Low molecular weight samples (number‐average molecular weight ~ 4000 g/mol) were prepared under suitable conditions and characterized by Fourier transform infrared and 1H NMR spectroscopy. The presence of primary hydroxyl head groups in PIB was verified by both methods. Quantitative Fourier transform infrared with 2‐phenyl‐1‐propanol calibration and 1H NMR performed on both the hydroxyl‐functionalized PIB and its reaction product with trimethylchlorosilane showed that each polymer chain carried one primary hydroxyl head group. The synthetic methodology presented here is an effective and simple route for the direct functionalization of PIB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1005–1015, 2002  相似文献   

3.
Novel aromatic-telechelic polyisobutylenes were prepared and characterized: α,ω-diphenylpolyisobutylene, α-phenyl-ω-tolylpolyisobutylene, and α,ωditolylpolyisobutylene. The syntheses involved the preparation of asymmetric telechelic prepolymers (α-phenyl-ω-tert-chloropolyisobutylene and α-tolyl-ω-tert-chloropolyisobutylene) by the minifer method and quantitative alkylation of benzene and toluene by the prepolymer. The terminal aromatic rings of these telechelic polyisobutylenes were quantitatively nitrated, acetylated, and chlorosulfonated and a series of further novel telechelic products was obtained. Characterization of these derivatives provided additional proof for the telechelic structure of the starting prepolymers. The quantitative reduction of nitroaryl-telechelic polyisobutylene by SnCl2/HCl led to aminoaryl-telechelic polyisobutylene which was used to cure bisphenol-A diglycidyl ether. These new flexible epoxy networks exhibited outstanding heat and hydrolytic stability combined with satisfactory mechanical properties.  相似文献   

4.
We describe the synthesis, characterization, and select properties of a novel polyurethane (PU) prepared using a new polyisobutylene diol, HO‐CH2CH2‐S‐PIB‐S‐CH2CH2‐OH, soft segment and conventional hard segments. The diol is synthesized by terminal functionalization of ally‐telechelic PIB followed by low‐cost thiol‐ene click chemistry. Properties of ‐S‐ containing PU (PIBS‐PU) containing 72.5% PIB were investigated and compared to similar PUs made with HO‐PIB‐OH (PIBO‐PU). Hydrolytic resistance was studied by contact with phosphate‐buffered saline, oxidative resistance by immersing in concentrated HNO3, and metal ion oxidation resistance by exposure to CoCl2/H2O2. Hydrolytic and oxidative resistances of PIBS‐PU and PIBO‐PU are similar and superior to a commercial PDMS‐based PU, Elast‐Eon? E2A. According to 1H NMR spectroscopy the ‐S‐ in PIBS‐PUs remained unchanged upon treatment with HNO3, however, oxidized mainly to ‐SO2‐ by CoCl2/H2O2. Static mechanical properties of PIBS‐PU and PIBO‐PU are similar, except creep resistance of PIBS‐PU is surprisingly superior. The thermal stability of PIBS‐PUs is ~15 °C higher than that of PIBO‐PU. FTIR spectroscopy indicates H bonded S atoms (N‐H…S) between soft and hard segments, which noticeably affect properties. DSC and XRD studies suggest random low‐periodicity crystals dispersed within a soft matrix. Energy dispersive X‐ray spectroscopy–scanning electron microscopy indicates homogeneous distribution of S atoms on PIBS‐PU surfaces. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1119–1131  相似文献   

5.
α,ω‐Dihydroxy‐telechelic poly(trimethylenecarbonate), HO‐PTMC‐OH, is synthesized from the controlled “immortal” ring‐opening polymerization (ROP) of trimethylene carbonate under mild conditions (bulk, 60 °C), using ZnEt2 or, more efficiently, [(BDI)Zn(N(SiMe3)2)] (BDI = CH(CMeNC6H3‐2,6‐iPr2)2) as catalyst precursor, in the presence of a diol HO‐R‐OH (R = (CH2)2 or CH2C6H4CH2; 0.5–10 equiv. vs Zn) acting both as co‐initiator and chain transfer agent. Alternatively, HO‐PTMC‐OH is prepared upon hydrogenolysis of HO‐PTMC‐OCH2Ph, initially prepared from the ROP of TMC using the [(BDI)Zn(N(SiMe3)2)]/PhCH2OH system, under smooth operating conditions using Pd/charcoal. Well‐defined dihydroxy‐functionalized PTMCs of molar mass ranging from = 2 000 to 109 500 g · mol−1 were thus quantitatively obtained and fully characterized by NMR, MALDI‐TOF‐MS and SEC analyses. The versatility of this “immortal” ROP allows the preparation of alike α,ω‐functional polyester such as linear HO‐poly(lactide)‐OH, as well as star polymers such as the glycerol‐based PTM‐OH3.

  相似文献   


6.
Allyl‐telechelic polyisobutylene (A‐PIB‐A) produced by the bis‐benzocyclobutane dichloride (bBCB‐diCl) initiator contains the bis‐benzocyclobutane (bBCB) fragment at the center of the macromolecule (A‐PIB‐bBCB‐PIB‐A). Thermolysis of A‐PIB‐bBCB‐PIB‐A quantitatively converts the central bBCB fragment to a substituted conjugated tetraene (A‐PIB‐tetraene‐PIB‐A). The structure of A‐PIB‐tetraene‐PIB‐A was anticipated from small molecule models and identified/quantitated by 1H NMR spectroscopy. This is the first time a reactive functional group was introduced at the statistical center of a (telechelic) PIB. Subsequently, the A‐PIB‐tetraene‐PIB‐A was peroxidized to an epoxy derivative. Reaction of the A‐PIB‐tetraene‐PIB‐A with HSCH2CH2OH produced HOCH2‐telechelic PIB containing a central  CH2OH function, and hydrosilation with HSi(Me2)‐O‐Si(Me2)H produced SiH‐telechelic PIB with a central  SiH function. Reactions with maleic anhydride, tetracyanoethylene, butyl lithium, and potassium permanganate have also been examined. In sum, A‐PIB‐bBCB‐PIB‐A and A‐PIB‐tetraene‐PIB‐A are useful intermediates for the synthesis of novel PIB‐based materials for various end uses under investigation. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1140–1145  相似文献   

7.
Detailed understanding of the mechanism of initiation and chain transfer in BCl3-coinitiated isobutylene polymerization led to the efficient synthesis of symmetric telechelic polyisobutylenes carrying ~CH2C(CH3)2Cl groups at either end of the molecule Cl-PIB-Cl. The synthesis is based on the use of inifers, i.e., bifunctional initiator-transfer agents that effect controlled initiation and propagation in the absence of chain transfer to a monomer. Specifically, the synthesis of Cl-PIB-Cl was achieved by the p-dicumyl chloride/BCl3/isobutylene/CH2Cl2 system. According to the inifer mechanism each Cl-PIB-Cl contains two terminal tertiary chlorines and one phenyl group at the interior of the chains. The structure of this new symmetric telechelic polymer has been established by detailed characterization studies including a sensitive new gel permeation chromatography (UV plus RI) analysis method, 1H-NMR, kinetic experiments, and chemical derivatization. The Cl-PIB-Cl molecule is a key intermediate for the synthesis of hosts of new materials, e.g., triblock copolymers, α,ω-diolefins, and α,ω-difunctional polymers.  相似文献   

8.
Sulfur‐containing polyisobutylene (PIB)‐based polyurethane nanocomposite (PIBs‐PU/NC) was synthesized using HO? CH2CH2? S? PIB? S? CH2CH2? OH for the soft segment, conventional hard segments of MDI and BDO, and organically modified montmorillonite (OmMMT) nanolayers. The properties of PIBs‐PU/NC containing 72.5% PIB and 0.5% OmMMT were studied and contrasted with unmodified PIBs‐PU. PIBs‐PU/NC produces colorless optically clear films exhibiting enhanced tensile strength, elongation, oxidative–hydrolytic stability, and creep resistance relative to that of PIBs‐PU. FTIR spectroscopy indicates H bonded S atoms between soft and hard segments, and OmMMT nanolayers. DSC and XRD suggest randomly dispersed low‐periodicity crystals and urea groups between galleries. We propose that minute amounts of OmMMT nanolayers become covalently attached to polyurethane chains and beneficially affect properties by acting as co‐chain extender/reinforcing filler. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2760–2765  相似文献   

9.
1H-NMR spectra of various telechelic (i.e., ~ CH2C(CH3)2Cl, ~ CH2C(CH3)?CH2, ~ CH?C(CH3)2, and ~ CH2CH(CH3)CH2OH capped) polyisobutylenes (PIB) have been analyzed. The products were prepared by living carbocationic polymerization followed by end-group functionalization. Shielding and deshielding effects strongly influence the 1H-NMR spectra of these products. Inductive effects (chlorine-ended PIBs), magnetically anisotropic end-groups (olefin groups and phenyl rings), allylic coupling (olefin end-groups), chirality (hydroxyl end-groups), and the interaction of these effects on the 1H-NMR spectra are discussed. Numerous heretofore unidentified resonances have been assigned and better insight into the detailed structure of end-functionalized PIBs has been obtained. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
This article reports the facile synthesis of novel terminally and centrally functionalized polyisobutylenes (PIBs) and the detailed characterization of the products by various mass spectrometry techniques. Specifically, H? PIB? CH2? C(OH)CH3? CH2? NHCH3 and [H? PIB? CH2? CH(OH)CH3? CH2]2? NCH3 were synthesized by the quantitative epoxidation of H? PIB? CH2? C(CH3)?CH2 and the subsequent conversion of the resulting epoxide with excess CH3NH2. Quaternization with CH3Cl of these mixtures of secondary and tertiary amines yielded exclusively H? PIB? CH2? C(OCH3)CH3? CH2? N(CH3)2 from the secondary amine, whereas the tertiary (centrally functionalized) amine remained unchanged. Tandem mass spectrometry experiments provided unique insight into the precise connectivity of the functional end groups added to the PIB frame. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 946–958, 2005  相似文献   

11.
The IR absorption spectra of α,ω-alkanediols with different chain lengths, HO(CH2)22OH and HO(CH2)44OH, in the spectral range of 400–5000 cm?1 are analyzed. The assignment of numerous absorption bands to vibration modes in short methylene sequences and terminal hydroxyl groups is suggested. The splitting of IR absorption bands into doublets at 720–730 cm?1 (rocking vibrations of CH2 groups) and 1463–1473 cm?1 (bending vibrations of CH2 groups) testifies that the crystal unit subcells in the lamellae of alkanediols are orthorhombic with parameters typical of normal hydrocarbons. The specific features of absorption bands due to O-H stretching and C-O-H bending vibrations have been analyzed. These bands appear during formation of lengthy associates from hydrogen bonds formed by hydroxyl groups on the surface of elementary lamellae. A sharp increase in the intensity of the absorption bands in progression of C-C stretching and CH2 wagging vibrations due to the anharmonic Fermi resonance with the stretching vibrations of C-O groups in the terminal hydroxyl groups has been detected.  相似文献   

12.
A solution of AlCl3 in CH2Cl2 prepared in advance was used 18 days after the mixing of the components as an initiation system in the polymerization of isobutylene performed in CH2Cl2 in the temperature range between ?10 and ?20°C. The 1H-NMR analysis of polyisobutylene (PIB) samples synthesized to low and high conversion showed that it is the initiation reaction and not the transfer reaction to dichloromethane that is responsible for the ? CH2Cl endgroup in the polymer chain. In case of the transfer to monomer formation of PIB with internal terminal unsaturation [PIB? CH?C(CH3)2] is preferred to external unsaturation [PIB? CH2(CH3)C?CH2]. The solutions of AlCl3 in CH2Cl2 showed an absorption band at λmax = 302 nm.  相似文献   

13.
Asymmetric telechelic polyisobutylene, α-PIB-ω), carrying the olefinic head group α = (CH3)2 C[dbnd]CHCH2- and tertiary chlorine endgroup ω = -C(CH3)2Cl has been synthesized by the use of the (CH3)2C[dbnd]CHCH2Cl/BCl3 initiating system. Highest yields were obtained by using methylene chloride diluent at about ?50°C. The presence and position of the olefinic head-group was proven by epoxidation/titration and epoxidation/cleavage. The presence and position of a tertiary chlorine endgroup was proven by initiating block polymerization of a second monomer, such as styrene or α-methylstyrene, by using the asymmetric telechelic polyisobutylene prepolymer in conjunction with Et2AlCl coinitiator. According to I/DP versus 1/[M] plots obtained in model block copolymerization experiments, with the use of the tert-BuCl/Et2AlCl initiating system at ?30°C, significant chain transfer to monomer occurs during blocking of styrene; however, monomer transfer is negligible during blocking of α-methylstyrene. Thus, under suitable conditions head-functionalized block copolymers (CH3)2C[dbnd]CHCH2-PIB-b-PαMeSt virtually free of homopolymer contaminants can be obtained.  相似文献   

14.
A simple but efficient strategy has been developed for the synthesis of novel di‐, tri‐, multi‐, and star‐block copolymers comprising poly(ethylene glycol) (PEG) and polyisobutylene (PIB) blocks. The synthesis principle involves the coupling of appropriately terminally functionalized PEG and PIB sequences, specifically the hydrosilation of mono‐, di‐, and tetra‐allyl‐telechelic PEGs (PEG‐allyl, allyl‐PEG‐allyl, and C(‐PEG‐allyl)4 by mono‐ and di‐Si(CH3)2H telechelic PIBs (PIB‐SiH and HiS‐PIB‐SiH). Representative block copolymers, for example, PEG‐PIB, PIB‐PEG‐PIB, (‐PIB‐PEG‐)n, and C(‐PEG‐PIB)4 have been assembled and their structures determined by 1H and 13C NMR spectroscopy. The bulk and surface morphology of select triblocks have been investigated by DSC and AFM and the findings interpreted in terms of phase‐separated PEG and PIB microdomains. The swelling behavior in water of various block copolymers also has been studied. Block copolymers containing 50–70 wt % PIB produce hydrogels, the integrity of which is maintained by physical crosslinks by PIB segments. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3200–3209, 2000  相似文献   

15.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

16.
α ω-Alkane-bis-dimethylarsine Sulfides and Selenides, a Novel Class of Ligands The reaction of α,ω-alkane-bis-dimethylarsanes (CH3)2As? (CH2)n? As (CH3)2 with sulfur and selenium results in formation of the sulfides and selenides, respectively, (CH3)2As(X)? (CH2)n? As(CH3)2 or (CH3)2As(X)? (CH2)n? As(X)(CH3)2 (X = S, Se), which form chelat-complexes with the salts CoX2 · 6 H2O (X = Cl?, Br?, I?, NO3?). The UV-spectra of the complexes are presented and discussed.  相似文献   

17.
By combining results from a variety of mass spectrometric techniques (metastable ion, collisional activation, collision-induced dissociative ionization, neutralization-reionization spectrometry, 2H, 13C and 18O isotopic labelling and appearance energy measurements) and high-level ab initio molecular orbital calculations, the potential energy surface of the [CH5NO]+ ˙ system has been explored. The calculations show that at least nine stable isomers exist. These include the conventional species [CH3ONH2]+ ˙ and [HO? CH2? NH2]+ ˙, the distonic ions [O? CH2? NH3]+ ˙, [O? NH2? CH3]+ ˙, [CH2? O(H)? NH2]+ ˙, [HO? NH2? CH2]+ ˙, and the ion-dipole complex CH2?NH2+ …? OH˙. Surprisingly the distonic ion [CH2? O? NH3]+ ˙ was found not to be a stable species but to dissociate spontaneously to CH2?O + NH3+ ˙. The most stable isomer is the hydrogen-bridged radical cation [H? C?O …? H …? NH3]+ ˙ which is best viewed as an immonium cation interacting with the formyl dipole. The related species [CH2?O …? H …? NH2]+ ˙, in which an ammonium radical cation interacts with the formaldehyde dipole is also a very stable ion. It is generated by loss of CO from ionized methyl carbamate, H2N? C(?O)? OCH3 and the proposed mechanism involves a 1,4-H shift followed by intramolecular ‘dictation’ and CO extrusion. The [CH2?O …? H …? NH2]+ ˙ product ions fragment exothermically, but via a barrier, to NH4+ ˙ HCO…? and to H3N? C(H)?O+ ˙ H˙. Metastable ions [CH3ONH2]+…? dissociate, via a large barrier, to CH2?O + NH3+ + and to [CH2NH2]+ + OH˙ but not to CH2?O+ ˙ + NH3. The former reaction proceeds via a 1,3-H shift after which dissociation takes place immediately. Loss of OH˙ proceeds formally via a 1,2-CH3 shift to produce excited [O? NH2? CH3]+ ˙, which rearranges to excited [HO? NH2? CH2]+ ˙ via a 1,3-H shift after which dissociation follows.  相似文献   

18.
The isomerization and fragmentation of α,ω-dimethoxyalkyl ions a (CH3OCH2(CH2)n- CH+OCH3, n = 1-6) has been investigated by deuterium labelling. It is shown that a isomerizes to ion a' by hydride transfer from the ω-CH2 group to the positive charge at the α-C-atom before elimination of methanol. Both methoxy groups are lost as methanol. The amount of isomerization can be deduced from alkene elimination from [a ? CH3OH]+ ions in deuterated derivatives of a. On average at 70 eV three rearrangement steps involving hydride transfer are observed.  相似文献   

19.
Preparatory to triblock synthesis experiments, the cationic polymerization of α-methylstyrene (αMeSt) was investigated using the 2-chloro-2,4,4-trimethylpentane (TMPCI)/TiCl4 initiating system in the presence of triethylamine (Et3N) as electron donor (ED) and CH3Cl/n-hexane mixed solvent in the ?80 to ?40°C range. Conversions are influenced by temperature, [TiCl4], [Et3N], and [αMeSt]. The polymerization of αMeSt is living at ?80°C: Both termination and chain transfer to monomer are frozen out, however, initiation is slow relative to propagation. Highly syndiotactic (>94%) Pα Mest was obtained. At?60deg;C initiator efficiency is ca. 100%, but termination becomes evident. Et3N may act both as Ed and as proton scavenger. Novel poly(α-methystyrene-b-isobutylene-b-α-methylstyrene) (PαMeSt-PIB-PαMeSt) triblocks have been synthesized by adding αMeSt to biliving polyisobutylene carbocations (⊕PIB⊕) in the ?80 to ?40°C range. The effects of temperature, solvent polarity, and [Et3N] on the block copolymerization have been investigated. At ?80°C, the rate of crossover from ⊕PIB⊕ to αMeSt is lower than that of propagation of PαMeSt⊕, so that the triblock is contaminated by PIB and PIB-b-PαMeSt. At ?60°C, crossover occurs preferentially. The rate of propagation relative to that of crossover is also reduced by lowering the solvent polarity and increasing the [Et3N]. High crossover efficiency and blocking efficiency can be obtained under optimum blocking conditions. The triblocks are novel thermoplastic elastomers (TPEs). © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Telechelic poly(ether ketone)s (PEKs) and polyisobutylenes (PIBs) were combined to form PIB? PEK? PIB triblock copolymers and (PIB? PEK)n multiblock copolymers via the formation of urea linkages. Monovalent and bivalent amino telechelic PIBs were prepared quantitatively from allyl telechelic PIBs by a newly developed reaction sequence featuring nucleophilic reaction steps. Telechelic PEK? NCO polymers were prepared from the corresponding amino telechelic PEKs via a reaction with diphosgene. The highly reactive PEK? NCO and PIB? NH2 telechelics formed PEK? PIB block copolymers only quantitatively when appropriately reactive primary amino groups were present on the amino telechelic PIBs. The obtained block copolymers were microphase‐separated and featured mostly lamellar structures, as determined by small‐angle X‐ray scattering (SAXS). Temperature‐dependent SAXS measurements revealed ordered polymers in the melt up to 210 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 188–202, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号