首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ion-molecule reactions of dimethyl ether ions CH3OCH3 + and (CH3OCH3)H+, and four- to seven-membered ring lactams with methyl substituents in various positions were characterized by using a quadrupole ion trap mass spectrometer and a triple-quadrupole mass spectrometer. In both instruments, the lactams were protonated by dimethyl ether ions and formed various combinations of [M + 13] +, [M + 15] +, and [M + 45] + adduct ions, as well as unusual [M + 3] + and [M + 16] + adduct ions. An additional [M + 47] + adduct ion was formed in the conventional chemical ionization source of the triple-quadrupole mass spectrometer. The product ions were isolated and collisionally activated in the quadrupole ion trap to understand formation pathways, structures, and characteristic dissociation pathways. Sequential activation experiments were performed to elucidate fragment ion structures and stepwise dissociation sequences. Protonated lactams dissociate by loss of water, ammonia, or methylamine; ammonia and carbon monoxide; and water and ammonia or methylamine. The [M + 16] + products, which are identified as protonated lactone structures, are only formed by those lactams that do not have an N-methyl substituent. The ion-molecule reactions of dimethyl ether ions with lactams were compared with those of analogous amides and lactones.  相似文献   

2.
The ammonia chemical ionization desorption spectra of N,N-dimethyl quaternary ammonium iodides in addition to high protonated molecular ion [M + H]+ intensity, show signals for an ion radical composed of N-methyl abstracted salt cation and ammonia [C + NH3? CH3]. These ions corresponding to the cation +2 show increased importance in the chemical ionization mode, using the same reagent gas. The technique of chemical ionization desorption appears suitable for the analysis of salts, and thus for the determination of the molecular weight of both anion and cation.  相似文献   

3.
The major dissociation pathways of the [M-H]+ (loss of NH3 or CH4) and the [M+H]+ (loss of NH3 or CH3) ions from dimethylpyrroles have been determined to occur from isomeric parent ions. For the [M-H]+ ion (formed by loss of a methyl hydrogen), loss of NH3 leads to the formation of the phenylium ion and is preceded by consecutive carbon ring expansions followed by a ring contraction to form protonated aniline. Loss of CH4 occurs after the first carbon ring expansion, which forms protonated picoline. The relative partitioning between the two dissociation paths depends upon the internal energy content of the parent ion; the highest point on the potential energy surface is the second ring expansion step. The [M+H]+ ion reacts through a similar pathway via dihydro analogs of picoline and aniline. The proposed reaction pathways are supported by results of semiempirical molecular orbital calculations.  相似文献   

4.
The ammonia desorption chemical ionization (NH3-DCI) mass spectra of peracetylated gentiobiose (1) and two isotopically labelled gentiobioses (2 and 3) were examined. Compound 2 is labelled with trideuteroacetyl groups in the non-reducing moiety and 3 with trideuteroacetyl groups in the reducing moiety. It is shown that the [M + NH4 – 42]+ ion is not formed direct from [M + NH4]+ by loss of ketene but appears to be formed by way of a nucleophilic acyl substitution reaction resulting in a neutral species which complexes with NH4+. The disaccharides undergo cleavage at either side of the glycosidic oxygen joining the two sugar residues, a process which is accompanied by addition of H or CH3CO to afford neutral species which complex with NH4+. The structures of the ions resulting from H transfer have been inferred by comparison of their mass-analysed ion kinetic energy (MIKE) spectra with MIKE spectra of the [M + NH4]+ ions of compounds of established structure. A ring fragmentation reaction of 1, 2 and 3 is reported.  相似文献   

5.
The positive ion field desorption (FD) spectrum of arginine taken at the best anode temperature only contains a peak due to [M+H]+ ions. At higher emitter temperatures a considerable amount of fragmentation is induced and the [M+H NH3]+ ions become most abundant. Specific 15N labelling reveals that the eliminated ammonia molecule, exclusively, contains one of the terminal nitrogen atoms of the guanidyl group. This also applies to the ammonia loss from metastably decomposing [M+H]+ ions. The positive ion fast atom bombardment (FAB) spectrum shows more fragmentation than the FD spectrum. In contrast with the FD results, the [M+H]+ ions generated upon FAB with ion lifetimes <10−6 s eliminate both ammonia containing one of the terminal nitrogen atoms of the guanidyl group and ammonia containing the α-amino group in the ratio of 1.35, as found by 15N labelling. The metastably decomposing [M+H]+ ions, however, eliminate only the former ammonia molecule. In the negative ion FD and FAB spectra no other peak than that corresponding to the [M H] ion is observed. Some attention has been paid to the thermal degradation of arginine on the basis of a few Curie-point pyrolysis experiments.  相似文献   

6.
The distinction between 17-epimeric 3,17-dioxygenated hydroxyandrostanes has been made by comparison of both their methane or ammonia positive and OH? negative chemical ionization (CI) mass spectra. In the methane or ammonia positive CI, the 17α-configuration in the eight stereoisomeric 5ξ-androstane-3ξ,17ξ-diols can be determined by the relative abundances of the ion [MH? 2 H2O]+. In the ammonia CI spectra, the ion [M+NH4? H2O]+ possesses only a low abundance, but a comparison of the relative rates of the loss of water v. the loss of ammonia from [M.NH4]+ in the second field-free region allows a clear distinction to be made between the 17α- and 17β-series. In the OH? negative CI mass spectra, the 5ξ-androstane-3-one-17ξ-ols produce an intense ion [M? H? H2O]? in the 17α-series only.  相似文献   

7.
Under ammonia chemical ionization (CI) conditions triarylpropenones undergo hydrogen radical-induced olefinic bond reduction on metal surfaces, resulting in [M + 2H + NH4]+ ions corresponding to the ammonium adduct of the saturated ketone. The decomposition of the adduct ions, [MNH4]+ and [M + 2H + NH4]+, was studied by collision-induced dissociation mass-analysed ion kinetic energy (CID-MIKE) spectroscopy in a reverse geometry instrument. From the CID-MIKE spectra of the [MNH4]+, [M + 2H + NH4]+, [MND4]+ and [M + 2D + ND4]+ ions it is clear that the fragmentation of the adduct ions involves loss of NH3 followed by various cyclization reactions resulting in stable condensed ring systems. Elimination of ArH and ArCHO subsequent to the loss of NH3 and formation of aroyl ion are characteristic decomposition pathways of the [MNH4]+ ions, whereas elimination of ArCH3 and formation of [ArCH2]+ are characteristic of the [M + 2H + NH4]+ ions of these propenones.  相似文献   

8.
The mechanism of elimination of ROH (R = H or CH3) from the ammonium adduct ion, [M+NH4]+, of 1-adamantanol and its methyl ether is examined by using linked-scan metastable ion spectra and by measuring the dependence of the peak intensity ratio [M+NH4]+/[M+NH4? ROH]+ on ammonia pressure. For 1-adamantanol both SNi and SN1 reactions are suggested in metastable ion decomposition, while only the SN1 mechanism is operative in the ion source. For 1-adamantanol methyl ether the SN1 reaction predominates both in metastable ion decomposition and in the ion source reaction.  相似文献   

9.
In the fast atom bombardment mass spectra of tetracyclines, ammonia elimination fragment ions, [M + H – NH3]+ and [M + H – NH3 – H2O]+, appeared with considerable abundances. A plausible mechanism for the loss of ammonia from [M + H]+ was discussed based on results by measurements on various types of tetracyclines and benzamides as the model compounds and B/E linked scanning. The results indicated that the loss of ammonia occurred in the carboxyamide moiety in the A ring and was accelerated by an ortho-hydroxy group. The same fragmentations were observed in the electrospray mass spectra of tetracyclines with a skimmer-capillary voltage differential of 150 V.  相似文献   

10.
The ammonia chemical ionization (CI/[NH4+]) mass spectra of a series of diastereomeric methyl and benzyl ethers derived from 3-hydroxy steroids (unsaturated in position 5 and saturated) have been studied. The adduct ions [M+NH4]+ and [MH]+ and the substitution product ions [M+NH4? ROH]+ (thereafter called [MsH]+) are characterized by an inversion in their relative stabilites in relation to their initial configuration. [M+NH4]α+ and [MH]α+ formed from the α-Δ5-steroid isomers are stabilized by the presence of a hydrogen bond which is not possible for the β-isomers. This stereochemical effect has also been observed in the mass analysed ion kinetic energy (MIKE) spectra of [M+NH4]+ and [MH]+. The MIKE spectra of [MsH]+ indicate that those issued from the β-isomers are more stable than the one originating from the α-isomers. This behavior is also observed in the first field free region (HV scan spectra) for [MH]+, [MsH]+ and [M+NH4]+ which are precursors of the ethylenic carbocations (base peak in the conventional CI/[NH4]+ spectra). Mechanisms, such as SN1 and SNi, have been ruled out for the formation of [MsH]+, but instead the data support an SN2 mechanism during the ion-molecule reaction between [M+NH4]+ and NH3.  相似文献   

11.
2,3‐Dimethyl‐2,3‐dinitrobutane (DMNB) is an explosive taggant added to plastic explosives during manufacture making them more susceptible to vapour‐phase detection systems. In this study, the formation and detection of gas‐phase [M+H]+, [M+Li]+, [M+NH4]+ and [M+Na]+ adducts of DMNB was achieved using electrospray ionisation on a triple quadrupole mass spectrometer. The [M+H]+ ion abundance was found to have a strong dependence on ion source temperature, decreasing markedly at source temperatures above 50°C. In contrast, the [M+Na]+ ion demonstrated increasing ion abundance at source temperatures up to 105°C. The relative susceptibility of DMNB adduct ions toward dissociation was investigated by collision‐induced dissociation. Probable structures of product ions and mechanisms for unimolecular dissociation have been inferred based on fragmentation patterns from tandem mass (MS/MS) spectra of source‐formed ions of normal and isotopically labelled DMNB, and quantum chemical calculations. Both thermal and collisional activation studies suggest that the [M+Na]+ adduct ions are significantly more stable toward dissociation than their protonated analogues and, as a consequence, the former provide attractive targets for detection by contemporary rapid screening methods such as desorption electrospray ionisation mass spectrometry. Copyright © 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.  相似文献   

12.
Experimental and theoretical studies on the oxidation of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) and ethanol in 28 Torr O2 or air plasma generated by a hollow cathode discharge ion source were made. Ions corresponding to [M + 15]+ and [M + 13]+ in addition to [M ? H]+ and [M ? 3H]+ were detected as major ions where M is the sample molecule. The ions [M + 15]+ and [M + 13]+ were assigned as oxidation products, [M ? H + O]+ and [M ? 3H + O]+, respectively. By the tandem mass spectrometry analysis of [M ? H + O]+ and [M ? 3H + O]+, H2O, olefins (and/or cycloalkanes) and oxygen‐containing compounds were eliminated from these ions. Ozone as one of the terminal products in the O2 plasma was postulated as the oxidizing reagent. As an example, the reactions of C6H14+? with O2 and of C6H13+ (CH3CH2CH+CH2CH2CH3) with ozone were examined by density functional theory calculations. Nucleophilic interaction of ozone with C6H13+ leads to the formation of protonated ketone, CH3CH2C(=OH+)CH2CH2CH3. In air plasma, [M ? H + O]+ became predominant over carbocations, [M ? H]+ and [M ? 3H]+. For ethanol, the protonated acetic acid CH3C(OH)2+ (m/z 61.03) was formed as the oxidation product. The peaks at m/z 75.04 and 75.08 are assigned as protonated ethyl formate and protonated diethyl ether, respectively, and that at m/z 89.06 as protonated ethyl acetate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Under positive ion chemical ionization conditions with ammonla at relatively low pressure, aromatic nitro compounds do not form [M + H]+ ions but often form ionic clusters [M + NH4]+ and [M + N2H7]+. Nitrobenzene forms a cluster [2M + NH4]+ and aniline, formed by nucleophilic substitution, leads to a cluster [anilinium ion + nitrobenzene]+. The dinitrobenzenes form [M + NH4]+ clusters and show evidence of nitroaniline formation and clustering. 1,3,5-Trinitrobenzene gives little indication of clustering or of substitution. The six isomers of trinitrotoluene appear to be stabilized by the methyl group and form clusters up to [M + N3H10]+. Nucleophilic substitution leads to dinitrotoluidines, which also form clusters with ammonium ions.  相似文献   

14.
The thermospray mass spectrometry (TSP/MS) of five N-methylcarbamates is presented. This is the first time that ions other than [M + H]+ and [M + NH4]+ have been reported using positive TSP/MS. Protonation of ROCONHCH3 yields the [CH3NH2CO] ion, with formation of the ion–molecule adduct [ROCONHCH3 · CH3NH2CO] through elimination of CO from [CH3NH2CO], and the adduct [M + 75], [ROCONHCH3 · OCONH2CH3], is also obtained.  相似文献   

15.
Ion/molecule reactions of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) in 28‐Torr N2 plasma generated by a hollow cathode discharge ion source were investigated using an Orbitrap mass spectrometer. It was found that the ions with [M+14]+ were observed as the major ions (M: sample molecule). The exact mass analysis revealed that the ions are nitrogenated molecules, [M+N]+ formed by the reactions of N3+ with M. The reaction, N3+ + M → [M+N]+ + N2, were examined by the density functional theory calculations. It was found that N3+ abstracts the H atom from hydrocarbon molecules leading to the formation of protonated imines in the forms of R′R″C?NH2+ (i.e. C–H bond nitrogenation). This result is in accord with the fact that elimination of NH3 is the major channel for MS/MS of [M+N]+. That is, nitrogen is incorporated in the C–H bonds of saturated hydrocarbons. No nitrogenation was observed for benzene and acetone, which was ascribed to the formation of stable charge‐transfer complexes benzene????N3+ and acetone????N3+ revealed by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, the seGVB method was implemented for the N H bonding system, specifically for hydrogen‐bonded ammonia complexes, and the model well reproduces the MP2 geometries and energetics. A comparison between the ammonia dimer and water dimer is given from the viewpoint of valance‐bond structures in terms of the calculated bond energies and pair–pair interactions. The linear hydrogen bond is found to be stronger than the bent bonds in both cases, with the difference in energy between the linear and cyclic structures being comparable in both cases although the NH bonds are generally weaker. The energy decomposition clearly demonstrates that the changes in electronic energy are quite different in the two cases due to the presence of an additional lone pair on the water molecule, and it is this effect which leads to the net stabilization of the cyclic structure for the ammonia dimer. Proton‐transfer profiles for hydrogen‐bonded ammonia complexes [NH2 H NH2] and [NH3 H NH3]+ were calculated. The barrier for proton transfer in [NH3 H NH3]+ is larger than that in [NH2 H NH2], but smaller than that in the protonated water dimer. The different bonding structures substantially affect the barrier to proton transfer, even though they are isoelectronic systems. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 357–367, 1999  相似文献   

17.
From a collisional activation spectral study it has been found that certain triterpene alcohols with an ursane or oleanane skeleton undergo oxidation to the corresponding ketones under chemical ionization (NH3) conditions giving rise to abundant [M + NH4 ? 2]+ ions. Mass-analysed ion kinetic energy and B2/E scan results indicate that both [M + NH4]+ and [M + N2H7 ? 2]+ ions contribute to the formation of the [M + NH4 ? 2]+ ion.  相似文献   

18.
Under Ammonia chemical Ionization conditions the source decompositions of [M + NH4]+ ions formed from epimeric tertiary steroid alchols 14 OHβ, 17OHα or 17 OHβ substituted at position 17 have been studied. They give rise to formation of [M + NH4? H2O]+ dentoed as [MHsH]+, [MsH? H2O]+, [MsH? NH3]+ and [MsH? NH3? H2O]+ ions. Stereochemical effects are observed in the ratios [MsH? H2O]+/[MsH? NH3]+. These effects are significant among metastable ions. In particular, only the [MsH]+ ions produced from trans-diol isomers lose a water molecule. The favoured loss of water can be accounted for by an SN2 mechanism in which the insertion of NH3 gives [MsH]+ with Walden inversion occurring during the ion-molecule reaction between [M + NH4]+ + NH3. The SN1 and SNi pathways have been rejected.  相似文献   

19.
The gas-phase H/D exchange of bradykinin [M + H]+, [M + Na]+, [M + 2H]2+, and [M + H + Na]2+ ions; des-Arg1-bradykinin, des-Arg9-bradykinin, and bradykinin fragment 2-7 [M + H]+ ions; and O-methylbradykinin [M + H]+ and [M + 2H]2+ ions with D2O have been examined by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry at 9.4 T. The different peptides vary widely in exchange rate and extent of deuterium incorporation. H/D exchange was slowest and deuterium incorporation was least for bradykinin [M + H]+, [M + H + Na]2+ and bradykinin methyl ester [M + 2H]2+ ions. In contrast, H/D exchange and extent of deuteration are higher for des-Arg1-bradykinin, des-Arg9-bradykinin, and bradykinin fragment 2-7 [M + H]+ ions; and highest for bradykinin [M + Na]+ and [M + 2H]2+, and O-methylbradykinin [M + H]+. Because the most likely site of protonation is the guanidino group of arginine, the above reactivity pattern strongly supports a zwitterion form for protonated gas-phase bradykinin.  相似文献   

20.
Per-O-acetylated methyl glycosides of D -xylan-type di- and trisaccharides were studied by mass-analysed ion kinetic energy (MIKE) and collisionally induced dissociation (CID) mass Spectrometry using protonated ammonia and methylamine, respectively, as reaction gases in chemical ionization (CI). The oligosaccharides form abundant cluster ions, [M + NH4]+ or [M + CH3NH3]+, and the main fragmentation of these ions in the MIKE and CID spectra is the cleavage of interglycosidic linkages. Thus, CI (NH3) or CI (CH3NH2) spectra in combination with the MIKE or CID spectra allow the molecular masses, the masses of monosaccharide units and the branching point in oligosaccharides to be established. In the case of disaccharides, it is possible to distinguish the (1 → 2) linkage from the other types of linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号