首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electron impact-induced fragmentation of azobenzenes and its d1, d2, d5, d10, and 15N analogues was studied by mass Spectrometry and ion kinetic energy spectroscopy. The main fragment ions found in the mass spectrum of azobenzene are due to two parallel stepwise processes from the molecular ion: the expulsion of N2 and two hydrogen radicals producing an ion at m/z 152 having possibly a biphenylene radical cation structure and loss of C6H5? and N2. Except in the elimination of two hydrogen atoms from [M ? N2] ions, hydrogen scrambling between the phenyl rings does not feature in azobenzene upon electron impact.  相似文献   

2.
A variety of rearrangement reactions have been documented in the gas phase ion chemistry of styryl sulfoxides and sulfones. The styryl group rearranges from sulfur to oxygen as evidenced by loss of SCH3 from methyl styryl sulfoxide and loss of SOCH3 from the corresponding sulfone. The resulting m/e 119 ion loses carbon monoxide in one fragmentation route and alternatively loses a hydrogen atom from the aromatic nucleus to produce the benzofuran molecule ion via an electrophilic aromatic ring closure reaction. Styryl sulfoxides lose both carbon monoxide and formyl radicals directly from their molecule ions, but the corresponding sulfones do not fragment in this manner. The mechanisms of the above reactions, as well as others, were investigated using substituent and deuterium labeling. The styryl group has been shown to migrate in preference to a phenyl or substituted phenyl group by investigation of the mass spectra of appropriate aryl styryl sulfoxides and sulfones.  相似文献   

3.
A study has been made of the mass spectral fragmentation upon electron impact of aliphatic C2? C12 chloromethyl esters and all their 66 monochlorinated derivatives. The fragmentation pathways of the parent chloromethyl esters were elucidated with the aid of the 1st FFR metastable ions. A McLafferty rearrangement gives the base peak in the C6? C11 parent esters and in almost all the 4-chloro and ω-chloro isomers. The subsequent loss of HCl gives a very characteristic peak of the chloromethyl esters and their (3-ω)-chloro derivatives at m/z 72, [C3H4O2]+. The 2-chloro isomers have the corresponding chlorine-containing fragment ion at m/z 106/108. The mass spectra of 2-, 3-, 4-, 5- and ω-chloro isomers give the characteristic fragment ions, the mass spectra of the other isomers being very similar.  相似文献   

4.
The rearrangement reactions following electron ionization in a number of aryl substituted conjugated nitriles have been studied using labelled compounds and collisional activation (CA) spectroscopy. The results indicate that α-phenyl cinnamonitriles and 9,10-dihydro-9-cyanophenanthrene rearrange to a common intermediate which loses CH3˙ or CH2CN˙ to give the ions at m/z 190 and 165. The CA spectrum of the deuterated analogue (compound 2) shows that there is a complete hydrogen scrambling prior to the loss of the CH3˙ radical. The fluoroderivatives (compounds 5 and 6) behave similarly to the parent nitrile. The introduction of chlorine or bromine into the aromatic ring alters the fragmentation pattern and the only favoured decomposition pathway is the loss of a halogen radical. The CA spectra of the doubly charged ions at m/z 102 and 88 are also discussed. The CA spectrum of the M +˙ ion 1,1-dicyano-2-phenyl ethylene is characterized by the presence of a rearrangement ion atm/z 103 (PhCN+ ˙).  相似文献   

5.
The 75 eV electron impact mass spectra of 1,1-bis(dimethoxyphenyl)methanes bearing o-methoxy groups are dominated by intense peaks corresponding, at least formally, to benzyl ions [(CH3O)2C6H3CH2]+ (b). They arise from ions [((CH3O)2C6H3)2CH]+ (a), which are in turn formed from molecular ions by loss of an alkyl radical through benzylic cleavage. The analysis of compounds labelled with 2H or 13C at methoxy groups led to the determination of the mechanism. Hydrogen migration, as hydride, followed by electrophilic substitution by the methylene carbon of the phenyl methylene ether cation through a six-centred transition state is responsible for the formation of benzylic ions b.  相似文献   

6.
Under conditions of collision‐induced dissociation (CID), anions of α‐hydroxycarboxylic acids usually fragment to yield the distinctive hydroxycarbonyl anion (m/z 45) and/or the complementary product anion formed by neutral loss of formic acid (46 u). Further support for the known two‐step mechanism, involving an ion‐neutral complex for the formation of the hydroxycarbonyl anion from the carboxyl group, is herein provided by tandem mass spectrometric results and density functional theory computations on the glycolate, lactate and 3‐phenyllactate ions. A fourth, structurally related α‐hydroxycarboxylate ion, obtained by deprotonation of mandelic acid, showed only loss of carbon dioxide upon CID. Density functional theory computations on the mandelate ion indicated that similar energy inputs were required for a direct, phenyl‐assisted decarboxylation and a postulated novel rearrangement to a carbonate ester, which yielded the benzyl oxide ion upon loss of CO2. Rearrangement of the glycolate ion led to expulsion of carbon monoxide, whereas the 3‐phenyllactate ion showed the loss of water and formation of the benzyl anion and the benzyl radical as competing processes. The fragmentation pathways proposed for lactate and 3‐phenyllactate are supported by isotopic labeling. The relative computed energies of saddle points and product ions for all proposed fragmentation pathways are consistent with the energies supplied during CID experiments and the observed relative intensities of product ions. The diverse reaction pathways characterized for this set of four α‐hydroxycarboxylate ions demonstrate that it is crucial to understand the effects of structural variations when attempting to predict the gas‐phase reactivity and CID spectra of carboxylate ions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Collision‐induced dissociation (CID) mass spectra of differently substituted glucosinolates were investigated under negative‐ion mode. Data obtained from several glucosinolates and their isotopologues (34S and 2H) revealed that many peaks observed are independent of the nature of the substituent group. For example, all investigated glucosinolate anions fragment to produce a product ion observed at m/z 195 for the thioglucose anion, which further dissociates via an ion/neutral complex to give two peaks at m/z 75 and 119. The other product ions observed at m/z 80, 96 and 97 are characteristic for the sulfate moiety. The peaks at m/z 259 and 275 have been attributed previously to glucose 1‐sulfate anion and 1‐thioglucose 2‐sulfate anion, respectively. However, based on our tandem mass spectrometric experiments, we propose that the peak at m/z 275 represents the glucose 1‐thiosulfate anion. In addition to the common peaks, the spectrum of phenyl glucosinolate (β‐D ‐Glucopyranose, 1‐thio‐, 1‐[N‐(sulfooxy)benzenecarboximidate] shows a substituent‐group‐specific peak at m/z 152 for C6H5‐C(?NOH)S?, the CID spectrum of which was indistinguishable from that of the anion of synthetic benzothiohydroxamic acid. Similarly, the m/z 201 peak in the spectrum of phenyl glucosinolate was attributed to C6H5‐C(?S)OSO2?. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
One of the most intense peaks in the mass spectrum of N-allylaniline is at m/z 106 (97%). High resolution analysis and collision-induced dissociation studies confirm that this peak contains mostly [C7H8N]+ ions having the anilinomethene structure, but also a small contribution is seen from [C8H10]+ ions which result from the loss of the elements of HCN from molecular ions, following an Amino–Claisen rearrangement. The occurrence of a thermal rearrangement in the sample molecules cannot, however, be completely ruled out. Studies on metastable molecular ions of N-allylaniline and collision-induced dissociation of the m/z 106 ions formed from these show that, in the case of molecular ions with energies closer to threshold, the rearrangement reaction competes much more effectively with the direct cleavage reaction.  相似文献   

9.
Specific D-labelling in the side-chain and in the phenyl ring, 13C-labelling in the benzylic position and in the cyano group and 15N-labelling in the cyano group of benzylcyanide show, that the molecular ion, decomposing in the second field free region, i.e. having a low internal energy, loses hydrogen cyanide with participation of both side-chain carbon atoms (22% benzylic carbon and 78% cyano carbon) after a complete randomization of all hydrogens. This sharply contrasts with the loss of hydrogen cyanide from the hydrogen randomized molecular ion, decomposing in the ion source, where the original cyano group is involved exclusively. The molecular ions of (o, m, p)-cyanobenzylcyanides, decomposing in the ion source as well as in the second field free region, also lose hydrogen cyanide, involving to some extent (6 to 15%) a carbon atom, different from that of the side-chain cyano group, after an extensive randomization of hydrogens as shown by specific D-labelling in several positions and by 13C- and 15N-labelling in the side-chain cyano group. Furthermore, the molecule of hydrogen cyanide, eliminated in the ion source and in the second field free region, appears to contain predominantly the side-chain cyano group (±70%), thus suggesting that few or none of the molecular ions have rearranged to a seven membered ring.  相似文献   

10.
In m-nitrobenzaldoxime a strongly enhanced loss of OH? is observed as compared with the p-nitro compound. Evidence is presented for a fragmentation mechanism involving the formation of a cyclohexadiene-type intermediate ion formed by a rearrangement of the hydroxyl hydrogen to the phenyl ring.  相似文献   

11.
The molecular ions of N,N-dimethylthiobenzamide and its ortho substituted derivatives (substituents CH3, Cl, Br, I) lose a hydrogen atom and/or the ortho substituent. The mechanism of this process has been studied by measurements of the ionization energies, appearance energies of the product ions m/z 164 and the kinetic energy release during this process. The structure of the product ions m/z 164 and relevant reference ions have been investigated by mass analysed ion kinetic energy spectra, B/E linked scan spectra and collision induced decompositions. The results show clearly the formation of two different kinds of product ions m/z 164 depending on the substituent lost. Type a ions are formed by loss of a H atom or the CH3 substituent and correspond to protonated 3,4-benzo-N-methylpyroline-2-thione. The formation of these ions occurs by a hydrogen rearrangement followed by an intramolecular substitution via a 5-membered cyclic intermediate and is associated with a large release of kinetic energy. In contrast, the loss of the halogeno substituents to give type b ions probably occurs via a direct displacement reaction by the sulfur atom of the thioamide group giving rise to Gaussian shaped peaks mass analysed ion kinetic energy spectra.  相似文献   

12.
The mechanism of the formation of [C7H8]+ ions by hydrogen rearrangement in the molecular ions of 1-phenylpropane and 1,3-diphenylpropane has been investigated by looking at the effects of CH3O and CF3 substituents in the meta and para positions on the relative abundances of the corresponding ions and on the appearance energies. The formation of [C7H8]+ ions from 1,3-diphenylpropane is much enhanced at the expense of the formation of [C7H7]+ ions by benzylic cleavage, due to the localized activation of the migrating hydrogen atom by the γ phenyl group. A methoxy substituent in the 1,3-diphenylpropane, exerts a site-specific influence on the hydrogen rearrangement, which is much more distinct than in 1-phenylpropane and related 1-phenylalkanes, the rearrangement reaction being favoured by a meta methoxy group. The mass spectrum of 1-(3-methoxyphenyl)-3-(4-trideuteromethoxyphenyl)-propane shows that this effect is even stronger than the effect of para methoxy groups on the benzylic cleavage. From measurements of appearance potentials it is concluded that the substituent effect is not due to a stabilization of the [C7H7X]+ product ions. Whereas the [C7H7]+ ions are formed directly from molecular ions of 1-phenylpropane and 1,3-diphenylpropane, the [C7H8]+ ions arise by a two-step mechanism in which the s? complex type ion intermediate can either return to the molecular ion or fragment to [C7H8]+ by allylic bond cleavage. Obviously the formation of this s? complex type ion, is influenced by electron donating substituents in specific positions at the phenyl group. This is borne out by a calculation of the ΔHf values of the various species by thermochemical data. Thus, the relative abundances of the fragment ions are determined by an isomerization equilibrium of the molecular ions, preceding the fragmentation reaction.  相似文献   

13.
The electron impact fragmentation of 1- and 3-aryl-3-buten-1-ols show several distinguishing fragmentations. α-Cleavage predominates in the fragmentation of the 1-aryl-3-buten-1-ols to such an extent that molecular ions of only low intensity are observed. The ion resulting from α-cleavage fragments readily with the loss of the ring substituent to the phenyl ion. An intense molecular ion is observed in the 3-aryl series and a loss of 70 u is a major fragmentation in this series. Based on deuterium labeling studies, this unique fragmentation was explained by a hydroxylic hydrogen migration to the ring accompanied by the loss of allene and formaldehyde. Other major fragmentations observed in the 3-aryl series are: a McLafferty-type rearrangement (loss of formaldehyde), loss of 33 u (water + methyl radical), and the loss of 43 u (C2H3O and C3H7). The proposed mechanisms have been substantiated by deuterium labeling and high resolution mass spectrometry. Substituent effects play a major role in the 3-aryl series, but are insignificant in the 1-aryl series.  相似文献   

14.
The collision-induced decompositions of the [M + Li]+ and [M + Ag]+ ions of per-O-acetyl- and per-O-benzyl-α-D -thioglycosides having phenyl sulphide, phenyl sulphoxide and phenyl sulphone as the aglycone moieties were studied. The [M + Li]+ ion of the acetyl derivative of the phenylthioglucoside shows loss of AcOLi, whereas its [M + Ag]+ ion shows elimination of PhSAg. Their sulphoxide and sulphone derivatives lose the C(1) and C(2) substituents to form the glucal under both Li+ and Ag+ cationization conditions. The corresponding benzyl derivatives do not show the loss of metal. The formation of glucal leads to ring fragmentation by retro-Diels-Alder reaction in the ring-activated benzyl derivatives.  相似文献   

15.
The unimolecular dissociation reactions for [C7H7O]+ ions generated by fragmentation of a series of precursor molecules have been investigated. The metastable kinetic energy values and branching ratios associated with decarbonylation and expulsion of a molecule of formaldehyde (CH2O) from the [C7H7O]+ ions are interpreted as the hydroxybenzyl and hydroxytropylium [C7H7O]+ not interconverting to a common structure on the microsecond time-scale. In addition, similar measurements on protonated benzaldehyde, methylaryloxy and phenyl methylene ether [C7H7O]+ ions are interpreted as the dominant fraction of these decomposing ions having unique structures on the microsecond time-scale. These results are supported by experimental heats of formation calculated from ionization/appearance energy measurements. The experimental heats of formation are determined as: hydroxybenzyl ions, 735 kJ mol?1; hydroxytropylium ions, 656 kJ mol?1; phenyl methylene ether ions, 640 kJ mol?1; methylaryloxy ions 803 kJ mol?1. The combination of the results reported in this paper with previously reported experimental data for stable [C7H7O]+ ions (see Ref. 1, C. J. Cassady, B. S. Freiser and D. H. Russell, Org. Mass Spectrom.) is interpreted as evidence that the relative population of benzyl versus tropylium [C7H7O]+ ion structures from a given precursor molecule is determined by isomerization of the parent ion and not by structural equilibration of the [C7H7O]+ ion.  相似文献   

16.
[C8H6O]+˙ ions with o-quinonoid ketene, benzocyclobutenone, phenyl ketene and benzofuran structures have been generated from various precursors. Their collisionally induced decompositions in both field free regions of a double focusing mass spectrometer with so-called reversed geometry have been studied using mass analysed ion kinetic energy scans and B/E linked scans. In both cases the abovementioned [C8H6O]+˙ structures can be distinguished–except the benzocyclobutenone ion which gives very similar spectra to the o-quinonoid ion–on the basis of the intensity ratios [m/z 77]/[m/z 76] and [m/z 104]/[m/z 102]. The stable [C8H6O]+˙ ions generated from the molecular ions of 7 -phenylbicyclo[3.1.1]heptan-6-one appear to have the phenyl ketene structure, as was suspected from previous kinetic energy release measurements.  相似文献   

17.
The [NO2C7H6]+ ions generated from m-alkylnitrobenzenes have been shown to be different in their decomposition from those generated from p-alkylnitrobenzenes, even when the alkyl group is methyl and the departing fragment a hydrogen radical. Thus, in these cases even molecular ions of relatively high internal energy do not reversibly ring-expand to cycloheptatriene structures. In addition, the [NO2C7H6]+ ions, assumed to be benzylic, do not ring-expand to nitrotropylium ions at internal energies sufficient to cause subsequent loss of NO or NO2 from the p- and m-isomers, respectively.  相似文献   

18.
Due to the possible role in human health, the number of analytical studies on lignans aimed at their quali‐ and quantitative analysis in plant extracts, biological fluids and foods is continuously increasing. However, helpful systematic mass spectrometric investigations on these compounds are few and rather limited to specific lignan sub‐classes. To increase the comprehension of the previously outlined picture of the gas‐phase properties of furofuran lignans, we extended the study to tetrahydrofuran lignans and here we reported the collision‐activated dissociation (CAD) fragmentation patterns of the alkali metal cation adducts, [M+Alk]+, and [M–H]? ions of three isomeric tetrahydrofuran lignans, (+)‐8′‐hydroxylariciresinol 4′‐O‐β‐D ‐glucopyranoside (1), (+)‐7′‐hydroxylariciresinol 7′‐O‐β‐D ‐glucopyranoside (2) and 4‐O‐β‐D ‐glucopyranosyloxy‐3,3′‐dimethoxy‐7,9′‐epoxylignan‐5′,8′,9‐triol (3) investigated by electrospray ionization triple quadrupole mass spectrometry (ESI‐TQMS). Hydrogen/deuterium (H/D) solution exchange experiments, allowing the selective H/D exchange of all the acidic hydrogen atoms, proved to be a very effective tool to obtain information on the nature of fragments generated during TQ/CAD processes. The [M+Na]+ CAD mass spectra of the three isomeric tetrahydrofurans revealed four different pathways involving the loss of the glucose moiety, which allowed the assignment of the glycosylation site. In the negative ion mode, the main fragmentation channel of the [M–H]? ions of O‐glucosylated lignans at the phenolic oxygen atoms is represented by the loss of 162 Da. When the sugar is bound to a benzylic OH group the loss of the sugar as a 180 Da unit occurs eventually following the loss of a water molecule involving both the C(9)H2OH chain and the sugar. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Polyethylene glycols react with CH3OCH2+ ions from dimethyl ether to form [M + 13]+ products. The [M + 13]+ ions are stabilized by intramolecular interactions involving the internal ether oxygen atoms and the terminal methylene group. Collisionally activated dissociation (CAD), including MSn and deuterium labeling experiments show that fragmentation reactions involving intramolecular cyclization are predominant. Scrambling of hydrogen and deuterium atoms in the ion-molecule reaction products is not indicated. The CAD spectra of the [M + 13]+ ions provide unambiguous assignment of the glycol size.  相似文献   

20.
The electron impact (EI) and chemical ionization (CI) spectra of 2,2-diphenyl-3-aryl cyclobutanone oximes (1–5) are reported. Formation of diphenylmethyl cation at m/z 167 is a major fragmentation process in both EI and CI spectra. Labelling studies established that the hydrogen involved in this rearrangement transfers from the NOH group and not from cyclobutane ring positions. The [M + 3]+ ions are formed under CI conditions as a result of C?N double bond reduction. An interesting secondary kinetic isotope effect is observed in the formation of ion e at m/z 183 in both EI and CI spectra. Other characteristic fragmentation pathways occurring in the EI and CI spectra of these compounds are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号