首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
IR photodissociation spectra of mass‐selected clusters composed of protonated benzene (C6H7+) and several ligands L are analyzed in the range of the C? H stretch fundamentals. The investigated systems include C6H7+? Ar, C6H7+? (N2)n (n=1–4), C6H7+? (CH4)n (n=1–4), and C6H7+? H2O. The complexes are produced in a supersonic plasma expansion using chemical ionization. The IR spectra display absorptions near 2800 and 3100 cm?1, which are attributed to the aliphatic and aromatic C? H stretch vibrations, respectively, of the benzenium ion, that is, the σ complex of C6H7+. The C6H7+? (CH4)n clusters show additional C? H stretch bands of the CH4 ligands. Both the frequencies and the relative intensities of the C6H7+ absorptions are nearly independent of the choice and number of ligands, suggesting that the benzenium ion in the detected C6H7+? Ln clusters is only weakly perturbed by the microsolvation process. Analysis of photofragmentation branching ratios yield estimated ligand binding energies of the order of 800 and 950 cm?1 (≈9.5 and 11.5 kJ mol?1) for N2 and CH4, respectively. The interpretation of the experimental data is supported by ab initio calculations for C6H7+? Ar and C6H7+? N2 at the MP 2/6‐311 G(2df,2pd) level. Both the calculations and the spectra are consistent with weak intermolecular π bonds of Ar and N2 to the C6H7+ ring. The astrophysical implications of the deduced IR spectrum of C6H7+ are briefly discussed.  相似文献   

2.
The mass spectra of the C3 to C9 n-alkanals and a number of branched aldehydes have been obtained at a resolution sufficient to resolve the O? CH4 doublets. From the resolved spectra, a study of metastable transitions, and the spectrum of one deuterium-labelled alkanal, (n-hexanal-2,2-d2) the major fragmentation reactions have been elucidated. Of particular interest are the γ-cleavage reaction, leading to [C3H5O]+ in the n-alkanals, which proceeds both by a simple cleavage and by cleavage preceded by hydrogen interchange, and the loss of C2H4, which involves loss of the C2 and, probably C3, carbons.  相似文献   

3.
Mass spectra of 1-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain, suggest that the [M? CH3]+ ion is represented partly by an α-hydroxybenzyl fragment. Moreover, the molecular ion loses successively—after scrambling of all hydrogen atoms, except those of CH3? a hydrogen atom and C6H6, generation the CH3CO+ ion. Diffuse peaks, found in the spectra of of 2-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain and in the phenyl ring, show that the molecular ion loses C2H4O, possibly via a four-center mechanism, after an exchange of aromatic and hydroxylic hydrogens. Mass spectra of 1-phenylpropanol-2 and its analogues, specifically, deuterated in the aliphatic chain, demonstrate that in the molecular ion exclusively the hydroxyl hydrogen atom is transferred to one of the ortho-positions of the phenyl ring via a McLafferty rearrangement, generating the [M ? C2H4O]+ ion. Furtherore, an eight-membered ring structure is proposed for the [M ? CH3]+ ion to explain the loss of H2O and C2H2O from this ion after an extensive scrambling of hydrogen atoms.  相似文献   

4.
The 12.1 eV, 75°C electron impact mass spectra of 24 urethanes, RNHCO2C2H5 [R ? H, C2H2n +1 (n = 1-8), CH2?CHCH2, Ph, PhCH2 and PhCH2CH2], and seven symmetrically disubstituted urethanes R2NCO2C2H5 (R ? Cn H2n + 1 (n = 1?4)) are reported and discussed. All 31 spectra show appreciable molecular ion peaks. For n ?Cn H2n +1 NHCO2C2H5, M+ ˙ usually is the most abundant ion in the spectrum. A peak at m/z 102 of comparable intensity also is present; this corresponds to formal cleavage of the bond connecting the α- and β-carbon atoms in the N-alkyl group, though it is unlikely that the daughter ion has the structure [CH2?NHCO2C2H5]+. In the RNHCO2C2H5 series, branching at the α-carbon atom enhances the relative abundance of the ion arising by notional α-cleavage at the expense of that of M+ ˙. Formal cleavage of the bond between β- and γ-carbon atoms occurs to some extent for [RNHCO2C2H5]+˙ ions; this reaction provides information on the degree of branching at the β-carbon, especially if metastable molecular ions are considered. The higher n-CnH2n +1NHCO2C2H5 (n = 5?8) urethanes exhibit two other significant ions in their mass spectra. First, there is a peak at [M ? C2H5]+. Secondly, a peak is present at m/z 90; the most plausible structure for this ion is [H2N(HO)COC2H5]+, arising by double hydrogen transfer from the alkyl group and expulsion of a [CnH2n ?1]˙ radical. Ions originating from secondary decomposition of the primary ionic species are generally of only very low abundance in these spectra.  相似文献   

5.
The molecular ion of hydrocinnamaldehyde (C6H5CH2CH2CHO) chiefly loses fragments C2H2O and C3H4O. Mass spectra of specifically deuterated analogues show that in the loss of C2H2O an α-hydrogen atom (with respect to the aldehyde group) is transferred to the aromatic part. A shift of the aldehydic hydrogen to one of the ortho positions of the phenyl ring and loss of C2H2O by a McLafferty rearrangement is not observed. In the loss of C3H4O also an α-hydrogen atom migrates to the aromatic part. Both reactions appear to occur with an extensive randomization of all hydrogen atoms in the molecular ion.  相似文献   

6.
Forty polycyanurates were prepared by the interfacial polycondensation of 2-substituted 4,6-dichloro-s-triazines with various aromatic diols. Nitrobenzene was used as a solvent, aqueous sodium hydroxide as an acid acceptor, and a cationic emulsifier as an accelerator. The rate of reaction was largely increased by ultrasonic irradiation. The polymer yield was in the range 57–91%, and the reduced viscosity was 0.41–3.5. The polymers were soluble in chloroform, nitrobenzene, and o-dichlorobenzene but insoluble in common organic solvents such as alcohol, acetone, and hydrocarbons. A clear film was obtained from the chloroform-soluble polymers after evaporation of the solvent. The softening temperature and the thermal stability of each polycyanurate was significantly related to the substituent on the s-triazine nucleus as well as to the diol component in the molecular chain. Polymers of favorable properties were derived from 2-substituted 4,6-dichloro-s-triazines with R = ? C6H5, ? N(C6H5)2, ? N(C6H11)2, ? N(C6H5)(SO2C6H4CH3), or carbazyl and aromatic diols such as 4,4′-dihydroxybenzophenone, Bisphenol A, or phenolphthalein. These polymers showed tensile strength of 500–670 kg/cm2, elongation at break of 2.9–6.0%, and a minor weight loss at 300–350°C.  相似文献   

7.
On Chalcogenolates. 85. Studies on Hemiesters of Trithiocarbonic Acid 3. Vibrational Spectra of Alkyl Thioxanthic Acids and Hydrogen Bondings in the Free Acids The IR spectra of alkyl thioxanthic acids RS? CS(SH) with R = CH3, C2H5, nC3H7, iC3H7, nC4H9, sC4H9, tC4H9, and CH3S? CS(SD) as well as the Raman spectrum of the Compound with R = CH3 have been assigned. The formation of hydrogen bondings in the free acids has been studied by means of i.r. spectra, 1H-n.m.r. spectra, and electron absorption spectra. The energies of the hydrogen bondings have been calculated.  相似文献   

8.
Proton decoupled 13C NMR spectra have been measured for the cyclopentadienyl compounds C5H5Si(CH3)nCl3?n(n = 1, 2, 3), C5H5Ge(CH3)3, CH3C5H4Ge(CH3)3, C5H5Sn(CH3)3, σ-C5H5Fe(CO)2-π-C5H5 and C5H5HgCH3. A fast metallotropic rearrangement occurring in the compounds causes the spectra to be temperature dependent for the Si, Ge, Sn and Fe derivatives. For the derivatives of silicon or germanium, the olefinic signals are unsymmetrically broadened by the 1,2-shift at lower migration rates. Line widths of the ring carbon signals have been measured to give an estimate for the activation parameters of the rearrangement in C5H5Ge(CH3)3 (Ea = 10·7 ± 0·9 kcal/mole, ΔG? = 13·4 ± 0·9 kcal/mole) and C5H5Sn(CH3)3 (Ea = 6·8 ± 0·7 kcal/mole, ΔG? = 7·1 ± 0·7 kcal/mole). At room temperature, the spectrum of C5H5HgCH3 displays just one narrow signal responsible for the cyclopentadienyl ligand. The spectrum of CH3C5H4Ge(CH3)3 at –30° demonstrates that two isomers containing methyl in the vinylic position are present, the ratio being ca. 2:1. The 13C spectra of the vinylic isomers have been analysed in the case of C5H5Si(CH3)nCl3?n.  相似文献   

9.
Using specific deuterium labelling the mechanisms of the olefin elimination reactions leading to formation of [C6H7]+ in the H2 and CH4 chemical ionizatin mass spectra of ethylbenzene and n-propylbenzene (and to [C2H5C6H6]+ in the CH4 chemical ionization mass spectra) have been investigated. The results show that the reaction does not occur by specific migration of H from the β position of the alkyl group to the benzene ring. For ethylbenzene 23–29% of the migrating H originates from the α-position, while for n-propylbenzene H migration from all propyl positions is observed in the approximate ratio, position 1:position 2:position 3=0.30:0.22:0.48. It is proposed that the results can be explained on the basis of competing H migration from each alkyl position involving cyclic transition states of different ring sizes, rather than by H randomization within the alkyl chain.  相似文献   

10.
Perylene (Py)‐containing polyacetylenes with different skeleton structures ? [HC?C(C6H4)CO2? Py]n? (P 1 ), ? [HC?C(CH2)8CO2? Py]n? (P 2 ), and ? {[(C6H5) C?C(CH2)9NH2]? co? [(C6H5)C?C(CH2)9? Py]}n? (P 3 ) are synthesized in satisfactory yields by Rh‐catalyzed polymerization (for P 1 and P 2 ) and polymer reaction (for P 3 ). All the polymers are soluble and possess high molecular weights (Mw up to 2.8 × 105). Their structures and properties are characterized and evaluated by IR, NMR, UV, TGA, PL, and photovoltaic (PV) analyses. The polymers are thermally stable, losing little of their weights when heated to 330 °C. When their solutions are irradiated, their perylene pendants emit intense red fluorescence at 610 nm. PV cells with a configuration of ITO/PEDOT:PSS/polymer/LiF/Al are fabricated, which show maximum current density of 10.3 μA/cm2. The external quantum efficiency is sensitive to the polymer structure, with P 3 exhibiting the highest value of 0.23%. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2025–2037, 2008  相似文献   

11.
The mass spectra of several alkyl phenyl tellurides, C6H5TeR (R = CH3, CD3, C2H5, n-C3H7, i-C3H7 and n-C4H9) have been studied with special emphasis on the fragmentation patterns involving cleavage of the alkyl and aryl tellurium–carbon bonds. Each compound exhibited intense parent ions. The rearrangement ions [C6H6Te]+? and [C6H6]+? were found in the spectra of phenyl ethyl and higher tellurides. Two other rearrangement ions [HTe]+ and [C7H7]+ were observed in the spectrum of each compound. Examination of the mass spectrum of phenyl methyl-d3 telluride demonstrated that the [HTe]+ ions derive hydrogen from the phenyl group.  相似文献   

12.
Five-membered cyclic esters of phosphoric acid of the general formula: ? CH2CH(R)OP(O)-(OR′)O? polymerize readily to solid, soluble polymers of high molecular weight without any rearrangement known for various tri- and pentavalent organophosphorus monomers. 1H-, 13C-, and 31P-NMR spectra of polymers confirmed their linear structure: where R is H, with R′ = CH3, C2H5, n-C3H7, i-C3H7; n-C4H9, CCl3CH2, or C6H5, or R is CH2Cl and R′ is C2H5. The use of n-C4H9Li, (C5H5)2Mg, or (i-C4H9)3Al as initiators leads to polymers with M n = 104–105.  相似文献   

13.
A series of arylantimony ferrocenecarboxylates with the formula (C5H5FeC5H4CO2)nSbAr(5?n) (n = 1, 2; Ar = C6H5, 4‐CH3C6H4, 3‐CH3C6H4, 2‐CH3C6H4, 4‐ClC6H4, 4‐FC6H4) were synthesized and characterized by elemental analysis, IR, 1H NMR and mass spectra. The crystal structures of (C5H5FeC5H4CO2)2Sb(4‐CH3C6H4)3 and C5H5FeC5H4CO2SbPh4 were determined by X‐ray diffraction. Four human neoplastic cell lines (HL‐60, Bel‐7402, KB and Hela) were used to screen these compounds. The results indicate that these compounds at 10 µM show certain in vitro antitumor activities. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The 70 eV mass spectrum of phenyl ω-dimethoxyethyl telluride [C6H5? Te? CH2CH(OR)2, R?CH3]contains an intense peak at m/z 238 which corresponds to a rearrangement ion [C6H5? Te? OR]+. The formation of this species is further illustrated by the presence of a peak at m/z 241 in the spectrum of the hexadeuterated analog (R?CD3) and a peak at m/z 252 in the spectrum of the ethyl analog (R?CH2CH3). These combined results illustrate the presence of only one of the alkoxyl groups in the rearrangement ion. Several other abundant ions that contain oxygen but not tellurium are present in the spectra of these compounds. High resolution analyses have aided in the determination of the origin and composition of several of the characteristic ions formed upon electron impact fragmentation of phenyl ω-dimethoxyethyl telluride.  相似文献   

15.
The behaviour under electron impact (70 eV) which includes some rearrangement processes of some tetraorganodiphosphanedisulfides R2P(S)-P(S)R2 (R ? CH3, C2H5, n-C3H7, n-C4H9, C3H5, C6H5) and CH3RP(S)–P(S)CH3R (R ? C2H5, n-C3H7, n-C4H9, C6H5, C6H5, C6H5,CH2) is reported and discussed. Fragmentation patterns which are consistent with direct analysis of daughter ions and defocusing metastable spectra are given. The atomic composition of many of the fragment ions was determined by precise mass measurements. In contrast to compounds R3P(S) loss of sulphur is not a common process here. The first step in the fragmentation of these compounds is cleavage of one P–C bond and loss of a substituent R?. The second step is elimination of RPS leading to [R2PS]+ from which the base peaks in nearly all the spectra arise. The phenyl substituted compounds give spectra with very abundant [(C6H5)3P]+. and [(C6H5)2CH3P]+. ions respectively, resulting from [M]+. by migration of C6H5. Rearrangement of [M]+. to a 4-membered P-S ring system prior to fragmentation is suggested.  相似文献   

16.
The low voltage, low temperature mass spectra of a series of octane derivatives n-C8H17X with X=CH3, OH, OCH3, NH2, NHCH3, N(CH3)2, CO2H, CO2CH3, CO2C2H5, CHO and COCH3 are reported and discussed, using arguments involving thermochemistry where appropriate. The structures of these compounds can be uniquely assigned on the basis of such mass spectra.  相似文献   

17.
The negative ion mass spectra of ferrocene and of a mixture of ferrocene with sulphur were studied. In the spectrum of the mixture, characteristic peaks of [C5H5 + Sn]? (n = 1, 2, 3 etc.) were observed. The structures of these ions are discussed.  相似文献   

18.
The composition of alkyl radicals (AR) formed by γ-radiolysis (T=77 K) of polycrystallinen-alkanes with different lengths of the carbon chain (C(5), C(7), C(10), C(11), and C(18)) and their polymeric analog (polyethylene) was estimated from the ESR spectra. The ESR spectra of the irradiatedn-alkanes are superpositions of the signals from the H3CC.HCH2− and −CH2C.HCH2− radicals, whose HFS constants with α and β protons as well as the equilibrium conformation are independent of the chain length of then-alkane molecule. A dependence of the concentration of the radicals on the chain length ofn-alkane was found. The absence of the −CH2C.H2 radicals that may arise upon H atom elimination from the Me fragments of then-alkane molecules is most likely related to the transfer of excitation energy from the Me group to the neighboring methylene fragment and the transformation of the −CH2C.H2 radicals into H3CC.HCH2− radicals. With account for this, the concentrations of the AR formed were suggested to be proportional to the number of H atoms at the corresponding C atom. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1034–1037, June, 2000.  相似文献   

19.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

20.
The synthesis of the nickel dialkynyl complex Ni(C?C? C6H4? C?CH)2(PPh3)2 and of the corresponding polyyne polymer containing nickel in the main chain ? [Ni(PPh3)2? C?C? C6H4? C?C? ]n are described and discussed. A new mixed solvent system DMSO/HNEt2 and homogeneous step-wise condensation method used for their synthesis are presented for the first time. The Ni-polyyne polymer obtained is dark yellow powder and soluble in THF or CH2Cl2. Its M?w is about 104, and the MWD is less than 2. Both the prepared complex and polymer have been characterized by IR, UV, 1H-NMR, and DTA. Preliminary results on photoluminesence of nickel polyyne polymers are present. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号