首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental investigation of the gas-phase photooxidation of toluene–NOx–air mixtures at part-per-million concentrations has been carried out in a 65-m3, outdoor smog chamber to assess our understanding of the atmospheric chemistry of toluene. In addition, six CO? NOx–air irradiations were conducted to characterize the chamber with regard to any wall radical sources. Measured parameters in the toluene–NOx experiments included O3, NO, NO2, HNO3, peroxyacetyl nitrate (PAN), CO, toluene, benzaldehyde, o-cresol, m-nitrotoluene, peroxybenzoyl nitrate (PBZN), temperature, relative humidity, aerosol size distributions, and particulate organic carbon. Predictions of the reaction mechanism of Leone and Seinfeld [7] are found to be in good agreement with the data under a variety of initial conditions. Additional simulations are used to investigate various mechanistic pathways in areas where our understanding of toluene chemistry is still incomplete.  相似文献   

2.
The aromatic ring-retaining products formed from the gas–phase reactions of the OH radical with benzene and toluene, in the presence of NOx, have been identified and their formation yields determined. These products, and their formation yields, are as follows: from benzene – phenol, 0.236 ± 0.044; nitrobenzene, {(0.0336 ± 0.0078) + (3.07 ± 0.92) × 10?16[NO2]}; from toluene – benzaldehyde, 0.0645 ± 0.0080; benzyl nitrate, 0.0084 ± 0.0017; o?cresol, 0.204 ± 0.027; m? + p?cresol, 0.048 ± 0.009; m-nitrotoluene, {(0.0135 ± 0.0029) + (1.90 ± 0.25) × 10?16[NO2]}, where the NO2 concentration is in molecule cm?3 units. The formation yields of o- and p-nitrotoluene from toluene were ca. 0.07 and 0.35 that of m-nitrotoluene, respectively. The observations that the nitro-aromatic yields do not extrapolate to zero as the NO2 concentration approaches zero are not consistent with current chemical mechanisms for these OH radical-initiated reactions, and suggest that under the experimental conditions employed in this study the hydroxycyclohexadienyl radicals formed from OH radical addition to the aromatic ring react with NO2 rather than with O2. However, these data concerning the nitroaromatic yields are consistent with our previous conclusions that many of the nitrated polycyclic aromatic hydrocarbons present in ambient air are formed, at least in part, in the atmosphere from OH radical reactions.  相似文献   

3.
The formation yields of selected products of the OH radical-initiated reactions of toluene, o-xylene, and 1,2,3,-trimethylbenzene have been measured in the absence of NOx and in the presence of varying concentrations of NO and NO2. The formation yield of o-cresol from toluene increased from 0.123 ± 0.022 in the absence of NOx to 0.160 ± 0.008 for an average NO2 concentration of 1.7 × 1014 molecule cm3. The formation yield of 2,3-butanedione from o-xylene was 0.092 ± 0.013 in the absence of NOx, and in the presence of NOx decreased from 0.16 at an average NO2 concentration of (7–8) × 1012 molecule cm?3 to 0.09 at an average NO2 concentration of ca. 7 × 1013 molecule cm?3. The formation yield of 2,3-butanedione from 1,2,3-trimethylbenzene increased from 0.18 in the absence of NOx to 0.444 ± 0.053 in the presence of ca. (0.16–3.6) × 1013 molecule cm?3 of NO2. These product data are consistent with literature kinetic data showing that the hydroxycyclohexadienyl radicals formed by OH radical addition to the aromatic ring react with both O2 and NO2 and with the NO2 reaction rate constants being ca. 105 higher than the O2 reaction rate constants at room temperature. Under typical tropospheric conditions the reactions of the hydroxycyclohexadienyl radicals with O2 will dominate over their reactions with NO2. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The partial oxidation of toluene with nitrous oxide over the H-ZSM-5 catalyst under supercritical conditions at temperatures of 370–420°C and pressures of 70–160 atm has been investigated for the first time. The maximum cresol selectivity under these conditions is 32%. The amounts of the resulting cresol isomers form the following decreasing sequence: m-cresol > o-cresol > p-cresol. The partial oxidation of toluene is accompanied by disproportionation and biphenyl formation.  相似文献   

5.
A new reaction mechanism describing the atmospheric photochemical oxidation of toluene is formulated and tested against environmental chamber data from the University of California, Riverside, Statewide Air Pollution Research Center (SAPRC). On simulations of toluene—NOx and toluene—benzaldehyde—NOx irradiations, the average predicted O3 and PAN maxima are within 3% of the experimental values. Simulations performed with the new mechanism are used to investigate various mechanistic paths, and to gain insight into areas where our understanding is not complete. Specific areas that are investigated include benzaldehyde photolysis, organic nitrate formation, alternate ring fragmentation pathways, and conjugated γ-dicarbonyl condensation to the aerosol phase.  相似文献   

6.
The gas-phase partial oxidation of benzene and toluene to phenol and to cresols over Fe-containing ZSM-5 zeolites prepared by various methods was studied using N2O as oxidant. Over FeZSM-5 synthesized by either isomorphous substitution or ion exchange the phenol selectivity reached nearly 100% at 573 K, however, only 25-30% cresol (mainly p-cresol) selectivity was observed in the oxidation of toluene because of the formation of benzaldehyde and benzoic acid in the fast oxidation of the methyl group.  相似文献   

7.
The kinetics of the reactions between sodium nitrite and phenol or m-, o-, or p-cresol in potassium hydrogen phthalate buffers of pH 2.5–5.7 were determined by integration of the monitored absorbance of the C-nitroso reaction products. At pH > 3, the dominant reaction was C-nitrosation through a mechanism that appears to consist of a diffusion-controlled attack on the nitrosatable substrate by NO+/NO2H2+ ions followed by a slow proton transfer step; the latter step is supported by the observation of basic catalysis by the buffer which does not form alternative nitrosating agents as nitrosyl compounds. The catalytic coefficients of both anionic forms of the buffer have been determined. The observed order of substrate reactivities (o-cresol ≈ m-cresol > phenol ≫ p-cresol) is explained by the hyperconjugative effect of the methyl group in o- and m-cresol, and by its blocking the para position in p-cresol. Analysis of a plot of ΔH# against ΔS# shows that the reaction with p-cresol differs from those with o- and m-cresol as regards the formation and decomposition of the transition state. The genotoxicity of nitrosatable phenols is compared with their reactivity with NO+/NO2H2+. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
A detailed mechanism is presented for reactions occurring during irradiation of part-per-million concentrations of propene and/or n-butane and oxides of nitrogen in air. Data from an extensive series of well-characterized smog chamber experiments carried out in our 5800-liter evacuable chamber–solar simulator facility designed for providing data suitable for quantitative model validation were used to elucidate several unknown or uncertain kinetic parameters and details of the reaction mechanism. The mechanism was then tested against the data base from the smog chamber runs. In general, most calculated concentration–time profiles agreed with experiments to within the experimental uncertainties. Fits were usually attained to within ~±20% or better for ozone, NO, propene, and n-butane, to within ~±30% or better for NO2, PAN, methyl ethyl ketone, 2-butyl nitrate, butyraldehyde, and (in runs not containing propene) methyl nitrate, to within ?±50% or better for the minor products 1-butyl nitrate and propene oxide, and to within a factor of 2 for methyl nitrate in propene-containing runs. Propionaldehyde was consistently underpredicted in all runs; it is probably a chamber contaminant. For formaldehyde and acetaldehyde, the major products in both systems, fits to within ?±20% were often obtained, yet for a number of experiments, significantly greater discrepancies were observed, probably as a result of experimental and/or analytical problems. The good fits to experimental data were attained only after adjusting several rate constants or rate constant ratios related to uncertainties concerning chamber effects or the chemical mechanism. The largest uncertainty concerns the necessity to include in the mechanism a significant rate of radical input from unknown sources in the smog chamber. Other areas where fundamental kinetic and mechanistic data are most needed before a predictive, detailed propene + n-butane-NOx-air smog model can be completely validated concern other chamber effects, the O3 + propene mechanism, decomposition rates of substituted alkoxy radicals, primary quantum yields for radical production as a function of wavelength for aldehyde and ketone photolyses, and the mechanisms and rates of reactions of peroxy radicals with NO and NO2.  相似文献   

9.
The ring-retaining products formed from the OH radical-initiated reactions of o-, m-, and p-xylene in the presence of NOx have been identified and their formation yields determined. Experiments were carried out at 298 ± 2 K and in the presence of 740 torr total pressure of air. The products observed, and their yields, were: from o-xylene, o-tolualdehyde, 0.0453; 2-methylbenzyl nitrate, (0.0135 + 5.5 × 10?17 [NO2]); 2,3-dimethylphenol, 0.097; 3,4-dimethyl-phenol, 0.064; 3-nitro-o-xylene, 0.0059; 4-nitro-o-xylene, (0.0111 + 9.9 × 10?17 [NO2]); from m-xylene, m-tolualdehyde, 0.0331; 3-methylbenzyl nitrate, 0.0061; 2,4-dimethylphenol, 0.099; 2,6-dimethylphenol, 0.111; 4-nitro-m-xylene, 0.0018; 5-nitro-m-xylene, (0.0032 + 1.6 × 10?17 [NO2]); from p-xylene, p-tolualdehyde, 0.0701; 4-methylbenzyl nitrate, 0.0082; 2,5-dimethylphenol, 0.188, 2-nitro-p-xylene, (0.0120 + 2.8 × 10?17 [NO2]), where the NO2 concentration is in molecule cm?3 units. The nitro-xylene data are consistent with our recent product study of the corresponding reactions of benzene and toluene and indicate that under the experimental conditions employed the dimethylhydroxycyclohexadienyl radicals reacted with NO2 and not with O2. When combined with literature ring-cleavage product yields, these data show that ca. 55–80% of the reaction pathways are accounted for.  相似文献   

10.
Rate constants have been determined at 296 ± 2 K for the gas phase reaction of NO3 radicals with a series of aromatics using a relative rate technique. The rate constants obtained (in cm3 molecule?1 s?1 units) were: benzene, <2.3 × 10?17; toluene, (1.8 ± 1.0) × 10?17; o? xylene, (1.1 ± 0.5) × 10?16; m? xylene, (7.1 ± 3.4) × 10?17; p? xylene, (1.4 ± 0.6) × 10?16; 1,2,3-trimethylbenzene, (5,6 ± 2.6) × 10?16; 1,2,4-trimethylbenzene (5.4 - 2.5) × 10?16; 1,3,5-trimethylbenzene, (2.4 ± 1.1) × 10?16; phenol, (2.1 ± 0.5) × 10?12; methoxybenzene, (5.0 ± 2.8) × 10?17; o-cresol, (1.20 ± 0.34) × 10?11; m-cresol, (9.2 ± 2.4) × 10?12; p-cresol, (1.27 ± 0.36) × 10?11; and benzaldehyde, (1.13 ± 0.25) × 10?15. These kinetic data, together with, in the case of phenol, product data, suggest that these reactions proceed via H-atom abstraction from the substituent groups. The magnitude of the rate constants for the hydroxy-substituted aromatics indicates that the nighttime reaction of NO3 radicals with these aromatics can be an important loss process for both NO3 radicals and these organics, as well as being a possible source of nitric acid, a key component of acid deposition.  相似文献   

11.
The temperature dependence of the rate coefficients for the OH radical reactions with toluene, benzene, o-cresol, m-cresol, p-cresol, phenol, and benzaldehyde were measured by the competitive technique under simulated atmospheric conditions over the temperature range 258–373 K. The relative rate coefficients obtained were placed on an absolute basis using evaluated rate coefficients for the corresponding reference compounds. Based on the rate coefficient k(OH + 2,3-dimethylbutane) = 6.2 × 10?12 cm3 molecule?1s?1, independent of temperature, the rate coefficient for toluene kOH = 0.79 × 10?12 exp[(614 ± 114)/T] cm3 molecule?1 s?1 over the temperature range 284–363 K was determined. The following rate coefficients in units of cm3 molecule?1 s?1 were determined relative to the rate coefficient k(OH + 1,3-butadiene) = 1.48 × 10?11 exp(448/T) cm3 molecule?1 s?1: o-cresol; kOH = 9.8 × 10?13 exp[(1166 ± 248)/T]; 301–373 K; p-cresol; kOH = 2.21 × 10?12 exp[(943 ± 449)/T]; 301–373 K; and phenol, kOH = 3.7 × 10?13 exp[(1267 ± 233)/T]; 301–373 K. The rate coefficient for benzaldehyde kOH = 5.32 × 10?12 exp[(243 ± 85)/T], 294–343 K was determined relative to the rate coefficient k(OH + diethyl ether) = 7.3 × 10?12 exp(158/T) cm3 molecule?1 s?1. The data have been compared to the available literature data and where possible evaluated rate coefficients have been deduced or updated. Using the evaluated rate coefficient k(OH + toluene) = 1.59 × 10?12 exp[(396 ± 105)/T] cm3 molecule?1 s?1, 213–363 K, the following rate coefficient for benzene has been determined kOH = 2.58 × 10?12 exp[(?231 ± 84)/T] cm3 molecule?1 s?1 over the temperature range 274–363 K and the rate coefficent for m-cresol, kOH = 5.17 × 10?12 exp[(686 ± 231)/T] cm3 molecule?1 s?1, 299–373 K was determined relative to the evaluated rate coefficient k(OH + o-cresol) = 2.1 × 10?12 exp[(881 ± 356)/T] cm3 molecule?1 s?1. The tropospheric lifetimes of the aromatic compounds studied were calculated relative to that for 1,1,1-triclorethane = 6.3 years at 277 K. The lifetimes range from 6 h for m-cresol to 15.5 days for benzene. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Abstract

A simple, rapid and sensitive titrimetric method with amplification has been worked out for the determination of 50–2000μg of o-cresol, m-cresol or p-cresol. It is based on bromination of these compounds with bromine water to form the corresponding hypobromites, which liberate an equivalent amount of iodine when treated with iodide. The sensitivity of the method has been increased using the Leipert amplification procedure. The coefficient of variation does not exceed 1.5% for above 500μg of the cresol, but increases to 2.2% at the 50μg-level.  相似文献   

13.
New thioether- and thianthrene-containing poly(benzoxazole)s (PBOs) were synthesized from 4,4′-thiobis[3-chlorobenzoic acid] and thianthrene-2,7- and -2,8-dicarbonyl chlorides with commercially available bis-o-aminophenols. Polymers were prepared via solution polycondensation in poly(phosphoric acid) at 90–200°C. Transparent PBO films were cast directly from polymerization mixtures or m-cresol. The films were flexible and tough. Non-fluorinated PBOs were soluble only in strong acids and AlCl3/NO2R systems by forming complexes with the benzoxazole heterocycle Glass transition temperatures ranged from 298–450°C, and thermogravimetric analysis showed good thermal stabilities in both air and nitrogen atmospheres. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
A reference material for the biological monitoring of occupational exposure to toluene, benzene and phenol was prepared. O-cresol and hippuric acid (metabolites of toluene) are used for the biological monitoring of occupational exposure to toluene. Phenol, a metabolite of benzene, is used for the biological monitoring of exposure to benzene, but phenol can of course also be used as an indicator of exposure to phenol as well. The reference material (RM) used for the determination of these metabolites was prepared by freeze-drying pooled urine samples obtained from healthy persons occupationally exposed to toluene and those taking part in an inhalation experiment. Tests for homogeneity and stability were performed by determining urine concentrations of o-cresol, hippuric acid, creatinine and phenol. To investigate the stability of the RM, the urinary concentrations of o-cresol and phenol were monitored for eighteen months using GC and HPLC, while those of hippuric acid and creatinine were followed for five and six years, respectively, using HPLC. Analysis of variance showed that the concentrations did not change. The certified concentration values (and their uncertainties) of the substances in this reference material (phenol concentration c=6.46±0.58 mg l−1; o-cresol concentration c=1.17±0.15 mg l−1; hippuric acid concentration c=1328±30 mg l−1; creatinine concentration c=0.82±0.10 g l−1) were evaluated via the interactive statistical programme IPECA.  相似文献   

15.
Unsymmetrically-substituted ruthenium(II) Schiff-base complexes, [Ru(CO)(B)(L x )] [B = PPh3, AsPh3 or Py; L x = dianion of tetradentate unsymmetrical Schiff-base ligand; x = 4–7, L4 = salen-o-hyac, L5 = valen-o-hyac, L6 = salphen-o-hyac, L7 = valen-2-hacn], were prepared and characterized by analytical, IR, electronic, and 1H NMR spectral studies. The new complexes were tested for their catalytic activity towards the oxidation of benzylalcohol to benzaldehyde.  相似文献   

16.
Hydrogen peroxide formation in the photooxidation of CO? NOx, ethene? NOx, and propene? NOx mixtures has been determined in the TVA 31 cubic meter smog chamber under the following conditions: [NOx] ca. 22–46 ppb; ethene = 0.22–1.1 ppm, [propene] = 0.12–0.97 ppm; [H2O] ca. 8 × 10?3 ppm. Ethene, propene, NO, NOx, PAN, HCHO, and CH3CHO were also monitored. Computer modeling was performed using the gas phase ethene and propene mechanism of the Regional Acid Deposition Model. There is good agreement between the model predicted and observed H2O2 concentrations. However, to successfully model all the propene? NOx experimental results, organic nitrate formation from the reaction of peroxy radicals with NO must be included in the mechanism.  相似文献   

17.
A single dielectric barrier discharge (DBD) low-temperature plasma reactor was set up, and toluene was selected as the representative substance for volatile organic compounds (VOCs), to study the reaction products and degradation mechanism of VOCs degradation by low-temperature plasma. Different parameters effect on the concentration of O3 and NOx during the degradation of toluene were studied. The exhaust in the process of toluene degradation was continuously detected and analyzed, and the degradation mechanism of toluene was explored. The results showed that the concentration of O3 increased with the increase of the power density and discharge voltage of the plasma device. However, as the initial concentration of toluene increased, the concentration of O3 basically keep steady. The concentration of NOx in the by-products increased with the discharge voltage, power density, and initial concentration of toluene in the plasma device, and the concentration of NO2 was much higher than the concentration of NO. The degradation process of toluene was detected and analyzed. The results showed that the degradation mechanism of toluene by plasma includes high energy electron bombardment reaction, active radical reaction and ion molecule reaction. Among them, the effect of high-energy electrons on toluene degradation is the largest, followed by the effect of free radicals, in which oxygen radicals participated in the reaction mainly through the formation of C–O bond, CO bond, (CO)–O– bond and –OH radical, while nitrogen radicals participate in the reaction mainly through the formation of C–NH2, (CNH)- bond, CN bond and C–NO2 bond. The results can provide some data supports for the study of low-temperature plasma degradation of VOCs.  相似文献   

18.
The atmospheric oxidation of amines proceeds via initial radical attack at C–H or N–H bonds to form carbon- and nitrogen-centered radicals, respectively. It is conventionally assumed that nitrogen-centered aminyl radicals react slowly with oxygen in the troposphere and associate predominantly with the radicals NO and NO2 to form toxic nitrosamines and nitramines. We have used theoretical kinetic modeling techniques to study the prototypical CH3NH + O2 reaction and have shown that it proceeds to CH2NH + HO2 under tropospheric conditions with a rate coefficient of 3.6 × 10−17 cm3 molecule−1 s−1. Although this value is low compared to the competing NOx reactions (∼10−11 cm3 molecule−1 s−1), the much higher concentration of O2 versus NOx in air makes it the dominant process in the atmospheric oxidation of methylamine for NOx concentrations below 100 ppb. The mechanism identified here is available to amines with primary, secondary, and tertiary α carbons and suggests that they may be less likely to form nitramines and nitrosamines than is currently thought.  相似文献   

19.
In this study phenylselenocyanate and some of its derivatives (o‐Cl, p‐Cl, p‐Br, o‐NO2, p‐NO2, o‐CH3, p‐CH3, o‐COOH, p‐COOH, p‐OCH3 substituted) were synthesized ( 3a–3j ). The synthesized compounds were converted to 5‐aryl‐1H‐tetrazole ( 4a–4j ), by Et3N ċ HCl‐NaN3 in toluene, which are a new series of phenylselanyl‐1H‐tetrazoles. The structure of all the presently synthesized compounds were confirmed using spectroscopic methods (FTIR, 1H NMR, MS). © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:255–258, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20293  相似文献   

20.
The kinetics and nitroarene product yields of the gas-phase reactions of naphthalene-d8, fluoranthene-d10, and pyrene with OH radicals in the presence of NOx and in N2O5? NO3? NO2? air mixtures have been investigated at 296 ± 2 K and atmospheric pressure of air. Using a relative rate method, naphthalene-d8 was shown to react in N2O5? NO3? NO2? air mixtures a factor of 1.22 ± 0.10 times faster than did naphthalene, with the 1- and 2-nitronaphthalene-d7 product yields being similar to those of 1- and 2-nitronaphthalene from naphthalene. From the measured PAH concentrations and the nitroarene product yields, formation yields of 2-, 7-, and 8-nitrofluoranthene-d9 and 2- and 4-nitropyrene of 0.03, 0.01, 0.003, 0.005, and 0.0006, respectively, were determined from the OH radical-initiated reactions. Effective rate constants for the reactions of fluoranthene-d10 and pyrene with N2O5 in N2O5? ;NO3? NO2? air mixtures of ca. 1.8 × 10?17 cm3 molecule?1 s?1 and ca. 5.6 × 10?17 cm3 molecule?1 s?1, respectively, were derived. Formation yields of 2-nitrofluoranthene-d9 and 4-nitropyrene of ca. 0.24 and ca. 0.0006, respectively, were estimated for these reaction systems. 2-Nitropyrene was also observed to be formed in these N2O5? NO3? NO2 reactions, but was found to be a function of the NO2 concentration and, therefore, would be a negligible product under ambient NO2 concentrations. These product and kinetic data are consistent with ambient air measurements of the nitroarene concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号