首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this piece of work, we introduce a new idea and obtain stability interval for explicit difference schemes of O(k2+h2) for one, two and three space dimensional second-order hyperbolic equations utt=a(x,t)uxx+α(x,t)ux-2η2(x,t)u,utt=a(x,y,t)uxx+b(x,y,t)uyy+α(x,y,t)ux+β(x,y,t)uy-2η2(x,y,t)u, and utt=a(x,y,z,t)uxx+b(x,y,z,t)uyy+c(x,y,z,t)uzz+α(x,y,z,t)ux+β(x,y,z,t)uy+γ(x,y,z,t)uz-2η2(x,y,z,t)u,0<x,y,z<1,t>0 subject to appropriate initial and Dirichlet boundary conditions, where h>0 and k>0 are grid sizes in space and time coordinates, respectively. A new idea is also introduced to obtain explicit difference schemes of O(k2) in order to obtain numerical solution of u at first time step in a different manner.  相似文献   

2.
We consider a family {u? (t, x, ω)}, ? < 0, of solutions to the equation ?u?/?t + ?Δu?/2 + H (t/?, x/?, ?u?, ω) = 0 with the terminal data u?(T, x, ω) = U(x). Assuming that the dependence of the Hamiltonian H(t, x, p, ω) on time and space is realized through shifts in a stationary ergodic random medium, and that H is convex in p and satisfies certain growth and regularity conditions, we show the almost sure locally uniform convergence, in time and space, of u?(t, x, ω) as ? → 0 to the solution u(t, x) of a deterministic averaged equation ?u/?t + H?(?u) = 0, u(T, x) = U(x). The “effective” Hamiltonian H? is given by a variational formula. © 2007 Wiley Periodicals, Inc.  相似文献   

3.
The paper describes the general form of an ordinary differential equation of the second order which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form
f( t,uy,wy + uuz ) = f( x,y,z )u2 u+ g( t,x,u,u,w )uz + h( t,x,u,u,w )y + 2uwzf\left( {t,\upsilon y,wy + u\upsilon z} \right) = f\left( {x,y,z} \right)u^2 \upsilon + g\left( {t,x,u,\upsilon ,w} \right)\upsilon z + h\left( {t,x,u,\upsilon ,w} \right)y + 2uwz  相似文献   

4.
The paper discusses the existence of positive and dead core solutions of the singular differential equation (?(u))=λf(t,u,u,u) satisfying the boundary conditions u(0)=A, u(T)=A, min{u(t):t∈[0,T]}=0. Here λ is a nonnegative parameter, A is a positive constant and the Carathéodory function f(t,x,y,z) is singular at the value 0 of its space variable y.  相似文献   

5.
In the classical compound Poisson model of the collective risk theory we consider X, the surplus before the claim that causes ruin, and Y, the deficit at the time of ruin. We denote by f(u; x, y) their joint density (u initial surplus) which is a defective probability density (since X and Y are only defined, if ruin takes place). For an arbitrary claim amount distribution we find that f(0; x, y) = ap(x + y), where p(z) is the probability density function of a claim amount and a is the ratio of the Poisson parameter and the rate of premium income. In the more realistic case, where u is positive, f(u; x, y) can be calculated explicitly, if the claim amount distribution is exponential or, more generally, a combination of exponential distributions. We are also interested in X + Y, the amount of the claim that causes ruin. Its density h(u; z) can be obtained from f(u; x, y). One finds, for example, that h(0; z) = azp(z).  相似文献   

6.
In this article, we study one-dimensional backward stochastic differential equations with continuous coefficients. We show that if the generator f is uniformly continuous in (y, z), uniformly with respect to (t, ω), and if the terminal value ξ ∈L p (Ω, ? T , P) with 1 < p ≤ 2, the backward stochastic differential equation has a unique L p solution.  相似文献   

7.
A one dimensional problem for SH waves in an elastic medium is treated which can be written as vtt = A?1 (Avy)y, A = (?μ)1/2, ? = density, and μ = shear modulus. Assume A ? C1 and A′/A ? L1; from an input vy(t, 0) = ?(t) let the response v(t, 0) = g(t) be measured (v(t, y) = 0 for t < 0). Inverse scattering techniques are generalized to recover A(y) for y > 0 in terms of the solution K of a Gelfand-Levitan type equation, .  相似文献   

8.
We prove an analog of the Girsanov theorem for the stochastic differential equations with interaction
dz( u,t ) = a( z( u,t ),mt )dt + ò\mathbbR f( z( u,t ) - p )W( dp,dt ), dz\left( {u,t} \right) = a\left( {z\left( {u,t} \right),{\mu_t}} \right)dt + \int\limits_\mathbb{R} {f\left( {z\left( {u,t} \right) - p} \right)W\left( {dp,dt} \right)},  相似文献   

9.
General envelope methods are introduced which may be used to embed equations with u-dependence into equations without solution dependence. Furthermore, these methods present a rigorous way to consider so-called nodal solutions. That is, if w(t,x,z) is the viscosity solution of some pde, the nodal solution of an associated pde is a function u(t,x) so that w(t,x,u(t,x)) = 0. Examples are given to first- and second-order pdes arising in optimal control, differential games, minimal time problems, scalar conservation laws, geometric-type equations, and forward backward stochastic control.  相似文献   

10.
In this paper, we propose a new high accuracy numerical method of O(k2 + k2h2 + h4) based on off-step discretization for the solution of 3-space dimensional non-linear wave equation of the form utt = A(x,y,z,t)uxx + B(x,y,z,t)uyy + C(x,y,z,t)uzz + g(x,y,z,t,u,ux,uy,uz,ut), 0 < x,y,z < 1,t > 0 subject to given appropriate initial and Dirichlet boundary conditions, where k > 0 and h > 0 are mesh sizes in time and space directions respectively. We use only seven evaluations of the function g as compared to nine evaluations of the same function discussed in  and . We describe the derivation procedure in details of the algorithm. The proposed numerical algorithm is directly applicable to wave equation in polar coordinates and we do not require any fictitious points to discretize the differential equation. The proposed method when applied to a telegraphic equation is also shown to be unconditionally stable. Comparative numerical results are provided to justify the usefulness of the proposed method.  相似文献   

11.
Summary We consider a model of random walk on ℤν, ν≥2, in a dynamical random environment described by a field ξ={ξ t (x): (t,x)∈ℤν+1}. The random walk transition probabilities are taken as P(X t +1= y|X t = x t =η) =P 0( yx)+ c(yx;η(x)). We assume that the variables {ξ t (x):(t,x) ∈ℤν+1} are i.i.d., that both P 0(u) and c(u;s) are finite range in u, and that the random term c(u;·) is small and with zero average. We prove that the C.L.T. holds almost-surely, with the same parameters as for P 0, for all ν≥2. For ν≥3 there is a finite random (i.e., dependent on ξ) correction to the average of X t , and there is a corresponding random correction of order to the C.L.T.. For ν≥5 there is a finite random correction to the covariance matrix of X t and a corresponding correction of order to the C.L.T.. Proofs are based on some new L p estimates for a class of functionals of the field. Received: 4 January 1996/In revised form: 26 May 1997  相似文献   

12.
Meena Sahai 《代数通讯》2013,41(3):817-828
ABSTRACT

Let K be a field of characteristic p ≠ 2 and let G be any group. A characterization of group algebras KG satisfying the Lie identity [[x,y],[u,v],[z,t]] = 0 for all x,y,u,v,z,t ? KG is obtained.  相似文献   

13.
For a bounded linear injectionCon a Banach spaceXand a closed linear operatorA : D(A) XXwhich commutes withCwe prove that (1) the abstract Cauchy problem,u″(t) = Au(t),t R,u(0) = Cx,u′(0) = Cy, has a unique strong solution for everyx,y D(A) if and only if (2)A1 = AD(A2) generates aC1-cosine function onX1(D(A) with the graph norm), if (and only if, in caseAhas nonempty resolvent set) (3)Agenerates aC-cosine function onX. HereC1 = CX1. Under the assumption thatAis densely defined andC−1AC = A, statement (3) is also equivalent to each of the following statements: (4) the problemv″(t) = Av(t) + C(x + ty) + ∫t0 Cg(r) dr,t R,v(0) = v′(0) = 0, has a unique strong solution for everyg L1locandx, y X; (5) the problemw″(t) = Aw(t) + Cg(t),t R,w(0) = Cx,w′(0) = Cy, has a unique weak solution for everyg L1locandx, y X. Finally, as an application, it is shown that for any bounded operatorBwhich commutes withCand has range contained in the range ofC,A + Bis also a generator.  相似文献   

14.
We study the asymptotic behaviour of the transition density of a Brownian motion in ?, killed at ∂?, where ? c is a compact non polar set. Our main result concern dimension d = 2, where we show that the transition density p ? t (x, y) behaves, for large t, as u(x)u(y)(t(log t)2)−1 for x, y∈?, where u is the unique positive harmonic function vanishing on (∂?) r , such that u(x) ∼ log ∣x∣. Received: 29 January 1999 / Revised version: 11 May 1999  相似文献   

15.
New solutions of the wave equation with three space variables of the form u = g(x,y,z,t)f(), where the functions g and = (x,y,z,t) are some specified functions and f is an arbitrary function of one variable, are presented. Bibliography: 4 titles.  相似文献   

16.
The Green's function in an octant relative to the Laplace equation Δu(x,y,z)=0 are obtained. The boundary conditions considered involve u(x,y,z), normal derivatives of u(x,y,z), linear combinations of these functions, or a mixture thereof.  相似文献   

17.
We study the initial-boundary value problem for ?t2u(t,x)+A(t)u(t,x)+B(t)?tu(t,x)=f(t,x) on [0,T]×Ω(Ω??n) with a homogeneous Dirichlet boundary condition; here A(t) denotes a family of uniformly strongly elliptic operators of order 2m, B(t) denotes a family of spatial differential operators of order less than or equal to m, and u is a scalar function. We prove the existence of a unique strong solution u. Furthermore, an energy estimate for u is given.  相似文献   

18.
We consider bilinear control systems of the form y′(t) = Ay(t) + u(t)By(t) where A generates a strongly continuous semigroup of contraction (e t A ) t⩾0 on an infinite-dimensional Hilbert space Y whose scalar product is denoted by 〈.,.〉. The function u denotes the scalar control. We suppose that B is a linear bounded operator from the state Y into itself. Tacking into account the control saturation, we study the problem of stabilization by feedback of the form u(t)=−f(〈By(t), y(t)〉). Application to the heat equation is considered.   相似文献   

19.
We apply the Five Functionals Fixed Point Theorem to verify the existence of at least three positive pseudo-symmetric solutions for the discrete three point boundary value problem, ?(g(?u(t-1)))+a(t))f(u(t))=0, for t∈{a+1,…,b+1} and u(a)=0 with u(v)=u(b+2) where g(v)=|v| p-2 v, p>1, for some fixed v∈{a+1,…,b+1} and σ=(b+2+v)/2 is an integer.  相似文献   

20.
The optimal systems and symmetry breaking interactions for the (1+2)-dimensional heat equation are systematically studied. The equation is invariant under the nine-dimensional symmetry group H 2. The details of the construction for an one-dimensional optimal system is presented. The optimality of one- and two-dimensional systems is established by finding some algebraic invariants under the adjoint actions of the group H 2. A list of representatives of all Lie subalgebras of the Lie algebra h 2 of the Lie group H 2 is given in the form of tables and many of their properties are established. We derive the most general interactions F(t,x,y,u,u x ,u y ) such that the equation u t =u xx +u yy +F(t,x,y,u,u x ,u y ) is invariant under each subgroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号