首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maximum degree of molecular orientation and deformation obtained by ultradrawing of high-density polyethylene in air is limited by formation of internal voids (both longitudinal separation of fibrils and perpendicular cracking), and thus values of Young's moduli which are achievable by ultradrawing techniques are also limited to values much below the theoretical limit for fully extended chains. Temperature has a significant effect on the critical draw ratios at which intensive void formation begins, and also on the draw ratio at which failure occurs during the ultradrawing. The temperature effect is observed only for high-density polyethylene having a wide molecular-weight distribution, and which can be drawn at higher temperatures (30–40°C below its melting point), e.g., Dow Chemical polyethylene LP51.1. As a result of ultradrawing at higher temperatures, transparent, ultrahigh modulus samples having draw ratios of order of 40 have been obtained. The higher drawing temperatures significantly reduce fibril separation, and perpendicular cracking is shifted toward higher draw ratios. Hence, with LP51.1 the highest Young's moduli (65–70 GPa) have been exhibited by the samples which were ultradrawn at 100–105°C.  相似文献   

2.
The angular dependence of scattering intensity of drawn polyethylene (PE) was investigated with a small-angle Kratky camera. At constant drawing temperature the intensity drops drastically with increasing draw ratio; however, the position and the half-width of the first maximum remain nearly unchanged. The drop in intensity can be explained only by a reduction of effective electron density difference between amorphous and crystalline components. The latter contains more vacancies, and the former contains more and better packed tie molecules. This increases the average density of the amorphous layer and decreases that of the crystalline component. As the temperature of the drawing increases, the draw ratio attainable at the applied draw rate drops and the intensity of scattering and the long period rapidly increase. In addition, a second-order maximum appears, indicating a better order of lamellar stacking, in good agreement with electron microscopy. The first annealing effect is an extremely rapid increase in scattering intensity and long period. The subsequent increase is rather slow and proportional to the logarithm of annealing time. The long period in such an experiment is independent of the draw ratio; however, the scattering intensity depends on it quite strongly even after prolonged annealing.  相似文献   

3.
The differential-scanning calorimetry (DSC) behavior of drawn linear polyethylene (LPE) has been investigated as a function of draw ratio and molecular weight. All the samples examined showed a dependence of the melting temperature on heating rate, an effect generally known as superheating. The magnitude of this effect, as well as the maximum melting temperatures, increased markedly at high draw ratio and high molecular weight. The highest melting temperature recorded was 145°C for a tape of draw ratio 25 and weight-average molecular weight of 312,000. The results were first considered in terms of the information which might be provided regarding crystal thickness. It was concluded that the DSC data are consistent with previous wide-angle x-ray diffraction results in confirming that an extended chain morphology similar to that observed in pressure crystallized LPE is not present in these samples. Secondly, the superheating effects were examined in the light of the possible configurational constraints on the amorphous regions of drawn polymers, along the lines proposed by Zachmann. It is possible to understand the effects of draw ratio and molecular weight very well on this basis, in a manner consistent with previous structural results on these materials.  相似文献   

4.
The recently developed technique of solid-state coextrusion for ultradrawing semicrystalline thermoplastics has been applied in the preparation of self-reinforced high-density polyethylene extrudates. The extrudates consist of definite core and sheath phases composed of different molecular weights (Mw) in the range of 60,000–250,000 and different molecular weight distributions (Mw/Mn = 3.0–20). Concentric billets of two different phases were prepared for extrusion by in serting a polyethylene rod within a tubular billet of a different high-density polyethylene followed by melting the two phases to obtain bonding between them. The billet was then split longitudinally to increase extrusion speed and extruded at 120°C, 0.23 GPa through a conical die of extrusion draw ratio 25. Extrudates of high tensile modulus (38 GPa) and strength (0.50 GPa) could be produced in a steady state process at a rate near 0.25 cm/min. The tensile properties of the extrudates from either the single or concentric billets increased with average molecular weight and were insensitive to the molecular weight distribution of the constituent phases. Thermal analysis indicated a high deformation efficiency for the sheath and core phases of the extrudates by the coextrusion technique.  相似文献   

5.
Replicas and thin-section electron microscopic studies were made of fractions of linear polyethylene covering the molecular weight range 2.78 × 104 to 6.0 × 106 for a variety of crystallizing conditions. Lamellar crystallites were found under all circumstances; and the supermolecular structure, or crystalline morphology, is in agreement with that previously reported from an analysis of the small-angle light-scattering patterns of the same samples under similar crystallization conditions. Details of the crystalline microstructure are also described, which range from truncated hollow pyramids which degenerate as the molecular weight or the undercooling are increased. From these results, it is possible to describe the mechanism of formation of polyethylene spherulites.  相似文献   

6.
The technique of nitric acid etching followed by gel permeation chromatography has been used to determine the crystal length distribution in ultrahigh-modulus polyethylenes. The crystal length distribution has been studied as a function of draw ratio, polymer molecular weight, processing conditions, and annealing. The results confirm that although there is a considerable broadening of the crystal length distribution on drawing, the majority of crystals have lengths less that 500 Å. There are detailed changes in the length distribution due to changes in draw temperature, molecular weight, and annealing which are not always reflected in corresponding changes in the long period determined from small-angle x-ray scattering. Possible reasons for these discrepancies are discussed.  相似文献   

7.
Ultra-high molecular weight polyethylene UHMWPE (M w=4 · 106,I s=O g/ 10 min), high density polyethylene of normal molecular weight NMWPE (I s= 4.8 g/10 min) and their blends have been investigated by means of thermomechanical loading in constant and impulse regime. It has been established that after melting, NMWPE passes to a viscous-liquid state. After melting at 138 °C UHMWPE passes to a high-elastic state. The transition of UHMWPE to a viscous-liquid state takes place at temperatures higher than 180 °C and is accompanied by a high-elastic reversible deformation. The blends of UHMWPE with 10 and 20 mass % of NMWPE show a plateau on the thermomechanical curves, corresponding to a high-elastic state, in a shorter temperature range where the deformation is greater. The blends containing the higher percent of NMWPE show thermomechanical curves lacking such a plateau. All blends are characterized by a singular thermomechanically defined temperature of melting, which increases with increase of UHMWPE content. The existence of the high-elastic state in the curves of UHMWPE and its blends containing NMWPE less than 30 mass % above their melting temperatures is explained by the high degree of physical crosslinking of UHMWPE.  相似文献   

8.
The creep behavior of ultrahigh-modulus polyethylene monofilaments has been studied over the temperature range 20–70°C. A wide range of samples was examined in an attempt to determine the influence of draw ratio, molecular weight, copolymerization, and crosslinking by γ irradiation Prior to drawing. Results are also presented for a solution-spun fiber. It is proposed that the permanent flow creep arises from a combination of two creep processes, one of which is associated with the crystalline regions of the oriented structure and the other with a molecular network.  相似文献   

9.
The tensile strength of oriented polyethylene filaments is discussed in relation to molecular weight. Short-term tensile properties at room temperature were obtained in our laboratory and from the literature for polymer samples covering the molecular weight (M w) range from 54 × 103 to 4 × 106, and polydispersities ranging from 1.1 to 15.6, oriented by solid-state extrusion, melt spinning/drawing, solution spinning/drawing, and “surface growth.” It was found that both the molecular weight and its distribution markedly affected tensile strength. The breaking stress σ of highly oriented fibers varied with molecular weight roughly as σ ∝, M0.4, at constant M w/M n over the entire range studied. Reduction of polydispersity from 8 to 1.1 by an increase of M n with M w approximately constant at 105 increased tensile strength of oriented polyethylene filaments by a factor of nearly 2.  相似文献   

10.
The nascent morphology of UHMW PE exhibits high melting point, high crystallinity, and increased WAXS line breadth relative to samples formed by melt crystallization. Different empirical relationships between crystal size and melting point are observed for nascent and molded samples. This differentiation is removed following nitric acid treatment of the nascent flake. Solid-state annealing behavior is differentiated by several regimes. Regime I is characterized by increasing crystallite dimensions and crystallinity at low annealing temperatures. Regime II[a] and II[b] is identified by double melting in DSC scans of moldings and nascent flake, respectively. The double melting is due to partial melting with incomplete recrystallization. Regime II[a] of moldings is differentiated from Regime II[b] of flake by an increase in melting point of the higher melting endotherm. Within Regime II[b], the partial melting of the nascent structure is sensitive to the distribution of morphological stability. Regime III is initiated at annealing temperatures approaching the zero heating rate melting point, and shows melting kinetics by DSC or time-resolved WAXS using synchrotron x-ray radiation. The superheat, partially associated with Regime III behavior, is sensitive to morphological heterogeneity and annealing history. Morphological models are discussed which highlight the role of noncrystalline regions and melting kinetics on the melting behavior of nascent form crystallinity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 495–517, 1998  相似文献   

11.
Infrared dichroism is employed to study the orientation of chain molecules in linear and ethyl-branched polyethylene in the crystalline and noncrystalline regions during drawing and subsequent annealing. A crystalline (1894 cm?1) and a noncrystalline (1368 cm?1) band, as well as the bands at 909 cm?1 and 1375 cm?1 resulting from vinyl endgroups and methyl endgroups and sidegroups, are studied. For these bands relative orientation functions are derived and compared as a function of draw ratio and annealing temperature. It is shown that the relative orientation functions as derived from the dichroism of the noncrystalline, vinyl and methyl bands follow the same curve while the orientation function for the crystalline bands does not. These results support a two-phase model for partially crystalline polyethylene and additionally favor segregation of the endgroups and sidegroups in the noncrystalline component during crystallization. It is further shown that shrinkage occurs at the temperature at which the noncrystalline chain molecules start to disorient. From the dichroism of the methyl groups in ethyl-branched polyethylene, a value for the mean orientation of the noncrystalline chain molecules is calculated. We obtain for the orientation function of the noncrystalline regions at highest draw ratios (λ = 15–20), f = 0.35–0.57, while the chain molecules in the crystallites are nearly perfectly oriented (f ≈ 1.0). On the assumption that the noncrystalline component consists of folds, tie molecules, and chain ends, the different contributions of these components to the overall orientation are estimated. From these the relative number of CH2 groups incorporated into folds, tie molecules, and cilia can be derived. Further, on the basis of a simple structural model, the relative number of chains on the crystal surface contributing to the different noncrystalline components and their average length are estimated.  相似文献   

12.
Electron microscope studies are reported for crystals of linear polyethylene formed in dilute solution from very sharp low molecular weight fractions. Emphasis is placed on molecular weights in the range of 1.1 × 103 to 15.1 × 103. The dependence of the crystal habit on the crystallization temperature is very similar to that which has been found for the higher molecular weight species. However, the demarcation temperature for the crystallization of the different morphological forms is very molecular weight-dependent. The conditions under which interfacial dislocation networks form can be clearly defined. The molecular weight must be less than 3000, so that these structures are restricted to very small chain lengths. However, not all crystallization conditions within this allowable molecular weight range yield such dislocations. The formation of interfacial dislocation networks are shown to occur only under very special circumstances. Their occurrence clearly cannot be offered as evidence, as has been done in the past, for a regular, chain-folded interfacial structure.  相似文献   

13.
Samples of ultra‐high molecular weight polyethylene, in which the chain topology within the amorphous component was altered using two‐stage processing, including crystallization at high pressure in the first step, were produced and their deformation behavior in the plane‐strain compression was studied. Deformation and recovery experiments demonstrated that the state of the molecular network governed by entanglement density is one of the primary parameters controlling the response of the material on the imposed strain, especially at moderate and high strains. Any change in the concentration of entanglements markedly influences the shape of the true stress–true strain curve. The strain hardening modulus decreases while the onset of strain hardening increases with a decrease of the entanglement density within the amorphous component. Density of entanglements also influences the amount of rubber‐like recoverable deformation and permanent plastic flow. In material of the reduced concentration of entanglements permanent flow appears easier and sets in earlier than in the material with a higher entanglement density, becoming a favorable deformation mechanism at moderate strains. As a result, strong strain hardening is postponed to higher strain when compared with the samples of equilibrium entanglement density. In the samples of an increased entanglement density the molecular network becomes stiffer, with a reduced ability of strain induced disentangling of chains. Consequently, there is a less permanent flow and strain hardening begins earlier than in the reference material of an unaltered chain topology. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 276–285, 2010  相似文献   

14.
The drawing behavior of a series of linear polyethylene homopolymers with weight-average molecular weight (M?w) ranging from 67,800 to ~3,500,000 and variable distribution (M?w/M?n = 5.1?20.9) has been studied. Sheets were prepared by two distinct routes: either by quenching the molten polymer into cold water or by slow cooling below the crystallization temperature (~120°C) followed by quenching into cold water. When the samples (2 cm long) were drawn in air at 75°C using a crosshead speed of 10 cm/min it was found that for low M?w polymers the initial thermal treatment has a dramatic effect on the rate at which the local deformation proceeds in the necked region. At high M?w such effects are negligible. An important result was that comparatively high draw ratios (λ > 17) and correspondingly high Young's moduli could be obtained for a polymer with M?w as high as 312,000. It is shown how some of the structural features of the initial materials (mainly studied by optical microscopy, small-angle x-ray scattering and low-frequency laser Raman spectroscopy) can be interpreted in terms of the molecular weight and molecular weight distribution of the polymers. Although crystallization and morphology can be important at low M?w, it suggested that the concept of a molecular network which embraces both crystalline and noncrystalline material is more helpful in understanding the drawing behavior over the whole range of molecular weights.  相似文献   

15.
The melt rheological properties of both linear and branched polyethylene were investigated by use of narrow molecular weight distribution fractions and experimentally polymerized samples. Studies carried out in steady shear and in oscillatory shear yielded information concerning both the melt viscosity and the melt elasticity as a function of molecular structure, where the latter was characterized by various solution property techniques. The 3.4–3.5 power dependence of the low shear limiting viscosity on molecular weight was confirmed for linear polyethylene. The effect of long-chain branching on rheological properties was defined both at constant molecular weight and at constant molecular weight distribution and coupled with variation of molecular weight.  相似文献   

16.
Different single crystal preparations of polyethylene with (unfractionated) and without (partially fractionated) low molecular weight chains were irradiated at room temperature. G(crosslink) was determined from the gel point. It is shown that in addition to the molecular weight and molecular weight distribution of polymers, G(crosslink) is determined by three more parameters: thickness of crystalline core, amount of amorphous surface layer, and degree of interlamellar contact. Unlike unfractionated polyethylene, partially fractionated polyethylene showed almost 100% gel at about 250 Mrad. To obtain the same amount of gel, unfractionated polyethylene required a much higher dose than that required by partially fractionated polyethylene. Molecular weight distribution of sol fractions of unfractionated and partially fractionated polyethylene was studied by gel permeation chromatography (GPC) and the solubility data analyzed by Charlesby–Pinner plots. It has been shown that the unattainability of 100% gel from unfractionated polyethylene is due to segregation of low molecular weight chains during crystallization which need very high doses for complete gelation.  相似文献   

17.
Wide-angle x-ray diffraction (WAXD) of the ultra-high modulus and molecular weight polyethylene (UHMWPE) fibers at room temperature shows a predominantly orthorhombic structure with trace amount of nonorthorhombic crystals and very low amorphous contents. The calculated unit cell dimensions a and b of the orthorhombic crystals are 7.36 (±0.04) Å, and 4.89 (±0.04) Å, respectively. The apparent crystallite sizes perpendicular to the orthorhombic 110 and 200 reflection planes are 169.8 and 143.4 Å, respectively. The crystallite size perpendicular to the nonorthorhombic 010 reflection is 149.4 Å. The crystal density is calculated to be 1.02 g/cc. With increasing temperature, the thermal expansion coefficient in the a direction is much higher than that in the b direction which explains the structural transformation from the orthorhombic crystals to a pseudohexagonal form. Tension along the fiber axis while being heated during the high-temperature x-ray diffraction (HTWAXD) scanning has shown enhanced structural transformation from the orthorhombic form to the monoclinic form. Structural transformation from the orthorhombic form to the pseudohexagonal phase is not observed on the UHMWPE fibers under axial tension or annealing conditions in HTWAXD. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 623–630, 1997  相似文献   

18.
Drawing of single-crystal mats of linear polyethylene has been investigated. Drawing is possible at temperatures higher than about 90°C. The drawing is accompanied by distinct necking, with a large decrease in the thickness of the mat and a very high maximum draw ratio, sometimes over 30. The maximum draw ratio is approximately proportional to the thickness of the lamellae. This behavior strongly suggests the unfolding of chains during drawing. A change of orientation of crystal axes occurs before necking without change of lamellar orientation. The a axis orients in the drawing direction; the b axis orients perpendicular to the direction of drawing; and the chain axis tilts away from the thickness direction of the mat. The structure of films drawn from mats is characterized by a distinct double orientation of crystals. This biaxial orientation in the drawn films has a high degree of correlation with the orientation of crystal axes observed before necking, and suggests that necking takes place in such a way that the chain tilts gradually about the b axis and ultimately unfolds. The postulate of formation of transitory two-dimensional crystals in necking seems useful in explaining the double orientation in the drawn film. The orientation behavior of crystal axes observed before necking is not always similar to that observed in the deformation of a single crystal. The difference is thought to be due to the effect of forces induced by drawing that act in the direction normal to the lamellae within a mat.  相似文献   

19.
The investigation of the effect of molecular structural variables on the melt viscosity of polyethylene was extended to the shear dependent region by application of a reduced variables treatment following, in a formal sense, that of Bueche. Viscosity–shear rate data were obtained for a series of experimentally polymerized linear polyethylene samples having a range of molecular weights and molecular weight distributions as characterized primarily by gel permeation chromatography. These data could be superimposed on a single reduced variables flow curve using parameters which were a function only of temperature, limiting Newtonian viscosity, M?w, and M?w/M?n. The same treatment was successfully applied also to branched (low-density) fraction data discussed in a previous paper, with additional correction for long-chain branching. However, different reduced variables curves were obtained for the branched and linear cases.  相似文献   

20.
Oriented rods of linear polyethylene have been prepared by hydrostatic extrusion at 100°C. Materials having a range of different molecular weights were investigated and their behavior was found to correlate well with the melt flow index. The differences in extrusion process characteristics for large- and small-diameter products are discussed. In this context the effect of deformational heating is important and criteria are suggested for determining its significance and also for determining the stability of the process in terms of a critical extrusion pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号