首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Copolymerization of N-oxyl biradical with α-chloro-p-xylylene was carried out by varying the feed ratio of α,α′-dichloro-p-xylene which was the precursor of α-chloro-p-xylylene. The structures of the obtained copolymers were determined spectroscopically. The results that the N-oxyl attacked the carbon-bearing chlorine atom of α-chloro-p-xylylene suggest a nucleophilic reactivity of N-oxyl radical. The copolymerization process was also discussed.  相似文献   

2.
Various α-halo-p-xylenes have been polymerized with base yielding p-xylylene polymers. The reaction involves a 1,6-dehydrohalogenation to give a xylylene which then polymerizes. α,α′-Dichloro-p-xylene forms poly-α-chloro-p-xylylene and polymers containing stilbene units; α,α,α′,α′-tetrachloro-p-xylene gives poly-α,α,α′-trichloro-p-xylylene; alkyl, aryl, and halogen ring-substituted α-chloro-p-xylenes give the corresponding ring-substituted poly-p-xylylenes. The more halogens in the α positions (up to five), the weaker the base necessary for dehydrohalogenation. Sodium hydroxide in methanol will polymerize tetrachloro-p-xylene, while potassium tert-butoxide in refluxing p-xylene is necessary to polymerize α-chloro-p-xylenes. Stilbenes are formed when α-halo-p-xylenes are reacted with potassium tert-butoxide in polar solvents such as dimethyl sulfoxide.  相似文献   

3.
Poly-p-xylylenes were prepared by electrolytic reduction of α,α′-dihalo-p-xylenes at controlled cathode potentials (c.p.). Polymers and halides are formed at the cathode; at the anode the halide is oxidized to halogen. Poly-p-xylylene was prepared from α,α′-dichloro-p-xylene (c.p. ?1.2 v.) and α,α′-dibromo-p-xylene (c.p. ?1.2 v.); poly-p-2-chloroxylylene from α,α′,2-trichloro-p-xylene (c.p. ?1.4 v.) and α,α′-dibromo-2-chloro-p-xylene (c.p. ?1.2 v.); poly-α,α,α′,α′-tetrachloro-p-xylylene from α,α,α,α′,α′,α′-hexachloro-p-xylene (c.p. ?0.7 v.), and poly-α,α,α′,α′-tetrafluoro-p-xylylene from α,α′-dibromo-α,α,α′,α′-tetrafluoro-p-xylene (c.p. ?1.1 v.). The cathode potentials were measured and controlled with respect to a saturated calomel electrode. Current efficiencies up to 96% were observed. α,α,α′,α′-Tetrachloro-p-xylylene was identified as an intermediate in the reduction of α,α,α,α′,α′,α′-hexachloro-p-xylene. A general mechanism for these reactions is suggested and discussed. It involves elimination of halide by a two-electron charge transfer with formation of a xylyl anion, followed by an elimination of halide in α′-position yielding xylylenes which then polymerize.  相似文献   

4.
Coupling of benzyl bromide giving 1,2-diphenylethane was demonstrated to proceed at room temperature in THF solution mediated by the potassium/18-crown-6 supramolecular complex. Based on this model reaction a novel method for the low temperature synthesis of poly(p-xylylene) from α,α′-dibromo-p-xylene is proposed. Experimental evidence of the polymer structure was provided by solid-state 13C NMR and IR spectroscopy.  相似文献   

5.
Synthese of sulfonated derivatives of 2-amino-p-xylene Sulfonation of 2-amino-p-xylene (2) gave 2-amino-p-xylene-5-sulfonic acid (1) . The 2-amino-p-xylene-6-sulfonic acid (3) was prepared via three routes: (1) sulfonation of 2-amino-5-chloro-p-xylene (19) to 5-amino-2-chloro-p-xylene-3-sulfonic acid (20) followed by hydrogenolysis; (2) sulfur dioxide treatment of the diazonium salt derived from 2-amino-6-nitro-p-xylene (21) to 2-nitro-p-xylene-6-sulfonyl chloride (11) followed by hydrolysis to 2-nitro-p-xylene-6-sulfonic acid (4) and Béchamp reduction; (3) Béchamp reduction of 2-chloro-3-nitro-p-xylene-5-sulfonic acid (13) to 3-amino-2-chloro-p-xylene-5-sulfonic acid (16) and subsequent hydrogenolysis. Catalytic reduction of 13 in aqueous sodium carbonate solution gave mixtures of 3 and 16 . 2-Amino-p-xylene-3-sulfonic acid (27) was synthesized via two routes: (1) reaction of 19 with sulfamic acid to 2-amino-5-chloro-p-xylene-3-sulfonic acid (26) followed by hydrogenolysis; (2) sulfur dioxide treatment of the diazonium salt derived from 2-amino-3-nitro-p-xylene (28) to 2-nitro-p-xylene-3-sulfonyl chloride (12) , hydrolysis to 2-nitro-p-xylene-3-sulfonic acid (7) and Béchamp reduction.  相似文献   

6.
This communication describes the direct polycondensation of carbon dioxide with p- and m-xylylene glycols using the system trisubstituted phosphine/carbon tetrahalide/base as a condensing agent. The polymerization reaction of carbon dioxide with p-xylylene glycol was carried out in the presence of the condensing agent in N,N-dimethylformamide. The yield was at most 81.0% obtained by using the condensing agent tributylphosphine/carbon tetrabromide/N-cyclohexyl-N′,N′,N″,N″-tetramethylguanidine (CyTMG). The structure of the product was determined by means of 1H NMR, 13C NMR, and IR spectroscopy to be that of a polycarbonate. The molecular weight was estimated to be ca. 1 000–2 000 by 1H NMR analyses.  相似文献   

7.
1,1,9,9-Tetrafluoro[2.2]paracyclophane ( 1 ) was prepared successfully as white crystals in 72% yield via two-step reactions from 1,9-diketo[2.2]-paracyclophane. The polymerization of 1 by the vapor deposition method was carried out at pyrolysis temperature range of 400 to 800°C and deposition temperature range of ?20 to 20°C, and a tough, transparent poly(α,α-difluoro-p-xylylene) film was obtained in 72% yield at the pyrolysis temperature of 750°C and the deposition temperature of ?20°C. It was found that the pyrolysis of 1 gave a reactive α,α-difluoro-p-xylylene, which polymerized on the head-to-tail addition to give poly(α,α-difluoro-p-xylylene). Some properties such as solubility, thermal stability, glass transition temperature, and density for poly(α,α-difluoro-p-xylylene) were studied. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Styrene/N-cyclohexylmaleimide copolymers with small polydispersities and controlled molecular weights were synthesized by a free radical copolymerization using an iniferter system consisting of benzoyl peroxide and 2,2,6,6-tetramethylpiperidine-N-oxyl. Due to the interactions of the electropositive (styrene) and electronegative (N-cyclohexylmaleimide) monomers the brutto polymerization rates are higher than for other living polymerizations initiated with the same iniferter system. The prepared copolymers were used as macroiniferters for bulk polymerization of styrene.  相似文献   

9.
A new, general synthetic route to poly-p-xylylene and substituted poly-p-xylylenes is described. The key intermediate in the new process is di-p-xylylene [(2,2)p-cyclophane]. It has been found that di-p-xylylene is quantitatively cleaved by vacuum vapor-phase pyrolysis at 600°C. to two molecules of p-xylylene. p-Xylylene spontaneously polymerizes on condensation to form high molecular weight, linear poly-p-xylylene. The conversion of di-p-xylylene to poly-p-xylylene is quantitative. The process is adaptable to the preparation of a wide variety of substituted poly-p-xylylenes by pyrolysis of ring-substituted di-p-xylylenes and polymerization of the resultant substituted p-xylylenes. Many of these polymers are not attainable by any other route. All are linear and free of crosslinking. Evidence supporting the proposed mechanism of pyrolytic cleavage of every molecule of di-p-xylylene to two molecules of p-xylylene is presented. Tough, transparent polymeric films are obtained from the process when the polymerization of the p-xylylenes is conducted on glass or metal surfaces. Outstanding combinations of physical, electrical, and chemical properties are displayed by poly-p-xylylene, polychloro-p-xylylene, and other substituted polymers. A comparison of the relative merits of the original Szwarc route and the new di-p-xylylene route to poly-p-xylylenes is presented.  相似文献   

10.
Poly[styrene-co-(N-vinylcarbazole)] copolymers with controlled molecular weights and narrow polydispersities were synthesized by nitroxide-mediated “living” free radical copolymerization using an initiator/capping agent system consisting of benzoyl peroxide (BPO) and the stable nitroxyl radical 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO). The copolymerization behaves in a “living” fashion and allows the synthesis of poly[styrene-co-(N-vinylcarbazole)]/polystyrene block copolymers via a controlled chain-extension reaction of the prepared copolymers with styrene.  相似文献   

11.
The catalytic isomerization of m-xylene was studied over a solid acid silicoaluminophosphate type SAPO-11, mixed to HZSM-5 zeolite. The reaction was processed varying the temperature and weight hourly space velocity, using a fixed bed continuous flow reactor. The m-xylene suffers isomerization to p-xylene and o-xylene by molecular displacement of methyl groups. The mixed catalyst was selective to p-xylene at 623 K and 2.5 h−1 with a maximum p/o ratio of 2.05. The ethylbenzene formation was not observed in the products. In this process an apparent activation energy of the order of 13.9 kJ mol−1 was obtained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The air oxidation of poly-p-xylylene films was studied at temperatures between 125 and 200°C. The oxidation kinetics were obtained from neutron activation (NA) oxygen analyses and infrared (IR) Spectroscopy. A correlation between the NA oxygen analyses and mechanical properties indicated that the amount of oxygen incorporated into these polymers before a significant degradation mechanical properties is about 1000 ppm for poly(dichloro-p-xylylene) and 5000 ppm for poly(monochloro-p-xylylene) or poly-p-xylylene. The activation energy for the oxidation of these polymers was about 30 kcal/mole. Long-term-use (100,000 hr) temperatures were also estimated for each of the poly-p-xylylenes studied. The 100,000-hr maximum continuous-use temperature is 112°C for poly(dichloro-p-xylylene), 72°C for poly(monochloro-p-xylylene), and 57°C for poly-p-xylylene.  相似文献   

13.
The catalytic action of aqueous NaOH at 20 °C on 2,2,6,6-tetramethyl-3-(N-methyl-piperidiniomethyl)-4-oxopiperidine 1-oxyl iodide rapidly resulted in the formation (k = 57 L mol−1 s−1) of a paramagnetic ketone with an activated double bond: 2,2,6,6-tetramethyl-3-methylidene-4-oxopiperidine 1-oxyl. The latter underwent slow transformation into a nitroxyl biradical containing an activated double bond and a methylene bridge linking positions 3 and 3′. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 421–423, February, 2008.  相似文献   

14.
Novel photosensitive polymers with pendant photosensitive group, such as cinnamic ester, and photosensitizer groups, such as N-carbamoyl-p-nitroaniline and N-carbamoly-4-nitro-1-naphthylamine, were synthesized from radical copolymerizations of (2-cinnamoyloxy)ethylmethacrylate with photosensitizer monomers, such as p-nitrophenylmethacrylamide and 4-nitro-1-na-phthylmethacrylamide, by using asobisisobutyronitrile (AIBN) in benzene and from the copolymerizations of (2-hydroxy)ethylmethacrylate or (2-hydroxy)ethylacrylate with photosensitizer monomers by using AIBN in DMF. This procedure was followed by condensation reactions of the copolymers with cinnamoyl chloride with pyridine as HCL acceptor in the same reaction flask. The photoreactivities of the polymers obtained were influenced by the concentration of photosensitive group and photosensitizer groups and their ratio in the polymer matrix. In addition, the photosensitivity of cinnamic ester groups attached to a soft polymer segment was higher than that of cinnamic ester group attached to a hard polymer segment when these polymers had the same pendant N-carbamoyl-p-nitroaniline group as photosensitizer. Furthermore, the spacer length between the polymer chain and photosensitizer group was important for increasing the photoreactivity of the photosensitive group in the polymers with pendant cinnamic ester and N-carbamoyl-p-nitroaniline groups.  相似文献   

15.
N-Phenylated aromatic polyamides of high molecular weights were synthesized by the hightemperature solution polycondensation of N,N′ -di(trimethylsilyl)-substituted dianilino compounds derived from p-dianilinobenzene, bis(4-anllinophenyl) ether, and α,α′-dianilino-p-xylene, with isophthaloyl and terephthaloyl chloride. Almost all of the N-phenylated polyamides were amorphous, and soluble in a variety of organic solvents including dimethylformamide, m-cresol, and chloroform. Transparent and flexible films of these polymers could be cast from the dimethylformamide solutions. Four wholly aromatic polyamides had glass transition temperatures in the range of 195–255°C, and began to lose weight around 400°C in air.  相似文献   

16.
The spontaneous copolymerization of 4-vinylpyridine (4-VP) complexed with three different zinc salts (chloride, acetate, and triflate) with various electron-rich vinyl monomers (p-methoxystyrene, MeOSt; p-methylstyrene, MeSt; α-methylstyrene, α-MeSt; p-tert-butylstyrene, BuSt; styrene, St) was investigated in methanol at 75°C. Increasing the zinc salt concentration or the nucleophilicity of the electron-rich monomer increased the copolymer yields. All obtained copolymers are characterized by high molecular weight (105) and broad molecular weight distribution. Both 1H-NMR and elemental analyses confirmed the almost 1 : 1 copolymer structure. Changing the anion of the zinc salt does not have a considerable effect either on the copolymerization rate or on the molecular weight. The proposed mechanism exhibits the formation of a σ-bond between the β-carbons of the two donor–acceptor monomers. This creates the 1,4-tetramethylene biradical intermediate which can initiate the copolymerization reaction. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2787–2792, 1997  相似文献   

17.
Abatement of Gas-phase p-Xylene via Dielectric Barrier Discharges   总被引:1,自引:0,他引:1  
The effectiveness of applying dielectric barrier discharges (DBDs) to remove p-xylene from gas streams was experimentally investigated in this study. Parameters investigated include applied voltage, gas flow rate, gas temperature and gas composition. Experimental results indicate that as high as 100% p-xylene removal efficiency is achieved for the gas stream containing low p-xylene concentration of 26 ppmv. Removal efficiency of p-xylene achieved with DBDs increases with increasing applied voltage. However, energy consumption is also increased with increasing applied voltage. The best energy efficiency of 7.1 g/kWh is achieved for the gas streams containing 500 ppmv p-xylene, 5% O2, 1.6% H2O(g), and balanced N2 at the applied voltage of 18 kV. Product analysis indicates that around 70 or 95% of the carbons in p-xylene molecules are transformed into carbon dioxide for the gas streams without or with water vapor, respectively.  相似文献   

18.
Polystyrene/poly[styrene-co-(butyl methacrylate)] block copolymers with controlled molecular weights and with polydispersities generally below w/n = 1,45 and partially as low as w/n = 1,19 were synthesized by a free radical bulk copolymerization using a 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)-capped polystyrene macroinitiator. The influence of the macroinitiator concentration on the block copolymerization was studied. The polymerization rates are independent of the macroinitiator concentration and are close to that of thermally self-initiated styrene/butyl methacrylate copolymerizations showing the important role of self-initiation for N-oxyl mediated free radical polymerizations.  相似文献   

19.
Abstract: Bis(dibutyltelluronium)p-xylylene dibromide reacts easily with α,β-unsaturated carbonyl compounds to give biscyclopropane derivatives in high yield.

  相似文献   

20.
The C-amidoalkylation of p-cresol with 4-chloro-N-(2,2-dichloro-2-phenylethylidene)benzenesulfon-amide in the presence of H2SO4, oleum, or a mixture of H2SO4 and P4O10 was studied for the first time. It was shown that the reaction not only leads to the targeted 4-chloro-N-[2,2-dichloro-1-(2-hydroxy-5-methylphenyl)-2-phenylethyl]benzenesulfonamide but is also accompanied by unexpected formation of the heterocyclic derivatives 4-chloro-N-(5-methyl-2-phenyl-1-benzofuran-3-yl)benzenesulfonamide and 5-methyl-3-phenyl-2-benzofuran-2(3H)-one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号