The chemical behavior of S‐glycopyranosyl‐N‐monoalkyl dithiocarbamates (DTCs) as masked 1‐glycosyl thiols, easily prepared by the nucleophilic displacement of 1‐halo sugars with dithiocarbamate salts of primary amines, has been studied and synthetically exploited. This behavior relies on the abstraction of the proton of the carbamate functionality that allows controlled access to thiolate sugar intermediates. The basic character of the DTC salts used as reagents leads to thiolates that evolve in situ to symmetrical diglycosyldisulfides (DGDSs) when long reaction times are allowed. Alternatively, controlled unmasking of the thiolate function can be efficiently attained by treatment with an external base of isolated anomeric glycosyl DTCs, the formation of which is prevalent when using short reaction times. In this manner, a second methodology for the preparation of symmetrical DGDSs and a chemical protocol for the S‐glycosylation of any electrophilic substrate are established. The applications of this last strategy for the preparation of thioglycosyl vinyl sulfones, thiodisaccharides, and S‐linked homo‐ and heterodivalent neoglycoconjugates are described as a proof‐of‐concept of the great potential of the sugar DTCs in any chemical scenario in which the covalent attachment of a thiol sugar is required. The evaluation of the biological functionality of some divalent sulfurated sugar systems is also described. 相似文献
A complete series of oxazoline di-, tri-, tetra-, and hexasaccharides, corresponding to the core sections of N-linked glycoprotein high mannose glycans, together with the corresponding oligosaccharides containing a central glucose unit, were synthesised and tested as glycosyl donors for glycosylation of a GlcNAcAsn glycosyl amino acid catalysed by the endohexosaminidases M (Endo M), A (Endo A) and H (Endo H). Whilst Endo H did not catalyse any glycosylation reactions, both Endo M and Endo A efficiently catalysed glycosylations that were not limited to donors containing the Manbeta(1-->4)GlcNAc linkage. Precise structure activity relationships and time course studies have revealed fine-tuning of the efficiency of the synthetic processes which correlated both with the enzyme used and the precise oxazoline structure. Efficient irreversible glycosylation was achievable with both Endo M and Endo A, further demonstrating the use of structurally modified oxazoline donors as transition state mimics in order to promote enzyme-catalysed synthesis, whilst precluding product hydrolysis; enzymes in these cases display "glycoligase" activity. 相似文献
The conversion of sugars into glycomimetics typically involves multiple protecting‐group manipulations. The development of methodology allowing the direct aqueous conversion of free sugars into glycosides, and mimics of oligosaccharides and glycoconjugates in a high‐yielding and stereoselective process is highly desirable. The combined use of 2‐azido‐1,3‐dimethylimidazolinium hexafluorophosphate and the Cu‐catalyzed Huisgen cycloaddition allowed the synthesis of a range of glycoconjugates in a one‐step reaction directly from reducing sugars under aqueous conditions. The reaction, which is completely stereoselective, may be applied to the convergent synthesis of triazole‐linked glycosides, oligosaccharides, and glycopeptides. The procedure provides a method for the one‐pot aqueous ligation of oligosaccharides and peptides bearing alkyne side chains. 相似文献
An array of sugar oxazolines was synthesized and tested as donor substrates for the Arthrobacter endo-beta-N-acetylglucosaminidase (Endo-A)-catalyzed glycopeptide synthesis. The experiments revealed that the minimum structure of the donor substrate required for Endo-A catalyzed transglycosylation is a Man beta1-->4-GlcNAc oxazoline moiety. Replacement of the beta-D-Man moiety with beta-D-Glc, beta-D-Gal, and beta-D-GlcNAc monosaccharides resulted in the loss of substrate activity for the disaccharide oxazoline. Despite this, the enzyme could tolerate modifications such as attachment of additional sugar residues or a functional group at the 3- and/or 6-positions of the beta-D-Man moiety, thus allowing a successful transfer of selectively modified oligosaccharides to the peptide acceptor. On the other hand, the enzyme has a great flexibility for the acceptor portion and could take both small and large GlcNAc-peptides as the acceptor. The studies implicate a great potential of the endoglycosidase-catalyzed transglycosylation for constructing both natural and selectively modified glycopeptides. 相似文献
We describe herein the preparation of 24 pure asparagine-linked oligosaccharides (Asn-oligosaccharides) from asparagine-linked biantennary complex-type sialylundecasaccharide [(NeuAc-alpha-2,6-Gal-beta-1,4-GlcNAc-beta-1,2-Man-alpha-1,6/1,3-)(2)-Man-beta-1,4-GlcNAc-beta-1,4-GlcNAc-beta-1-asparagine, 2] obtained from egg yolk. Our synthetic strategy aimed at adapting branch specific exo-glycosidases digestion (beta-D-galactosidase, N-acetyl-beta-D-glucosaminidase and alpha-D-mannosidase) of the individual asialo-branch after preparation of monosialyloligosaccharides obtained from 2 by acid hydrolysis of NeuAc. In order to perform branch specific exo-glycosidase digestion, isolation of pure monosialyloligosaccharides obtained was essential. However, isolation of two kinds of monosialyloligosaccharides are difficult by HPLC due to their highly hydrophilic nature. Therefore, we examined chemical protection with hydrophobic protecting (Fmoc and benzyl) groups. These chemical protection enabled us to separate the monosialyloligosaccharides by use of a HPLC column (ODS) on synthetic scales. Using these pure monosialiloligosaccharides enable us to obtain 24 Asn-linked oligosaccharides (100 mg scale) within a few weeks by branch specific exo-glycosidase digestions (alpha-D-neuraminidase, beta-D-galactosidase, N-acetyl-beta-D-glucosaminidase and alpha-D-mannosidase). In addition, solid-phase synthesis of glycopeptide having Asn-linked sialyl-undeca- and asialo-nonasaccharides thus obtained, was also performed on an acid labile HMPA-PEGA resin. 相似文献
In naturally occurring glycopeptides and glycoproteins the glycan residues generally possess N- and O-linkages to the peptide backbone. Here we report the synthesis of the corresponding S-linked glycopeptides by a convergent strategy to provide compounds which should be quite stable to glycosidases. To this end, peptides that contain beta-bromoalanine and gamma-bromohomoalanine were generated either directly by bromination of serine and homoserine residues, respectively, or by standard ligation of the corresponding amino acids. 1-Thiosugars of O-acetyl protected GalNAc, GlcNAc, and lactose were prepared by known procedures. Reaction of the thiosugars with these peptides in an ethyl acetate/water two-phase system, which contained TBAHS and NaHCO(3), or in a one-phase system that consists of DMF/water and which contains NaHCO(3), led to the desired S-linked glycopeptides cleanly and in almost quantitative yield. This reaction also worked well for O-unprotected 1-thiosugars. 相似文献
The conformations of peptides and proteins are often influenced by glycans O‐linked to serine (Ser) or threonine (Thr). (2S,4R)‐4‐Hydroxyproline (Hyp), together with L ‐proline (Pro), are interesting targets for O‐glycosylation because they have a unique influence on peptide and protein conformation. In previous work we found that glycosylation of Hyp does not affect the N‐terminal amide trans/cis ratios (Ktrans/cis) or the rates of amide isomerization in model amides. The stereoisomer of Hyp—(2S,4S)‐4‐hydroxyproline (hyp)—is rarely found in nature, and has a different influence both on the conformation of the pyrrolidine ring and on Ktrans/cis. Glycans attached to hyp would be expected to be projected from the opposite face of the prolyl side chain relative to Hyp; the impact this would have on Ktrans/cis was unknown. Measurements of 3J coupling constants indicate that the glycan has little impact on the Cγ‐endo conformation produced by hyp. As a result, it was found that the D ‐galactose residue extending from a Cγ‐endo pucker affects both Ktrans/cis and the rate of isomerization, which is not found to occur when it is projected from a Cγ‐exo pucker; this reflects the different environments delineated by the proline side chain. The enthalpic contributions to the stabilization of the trans amide isomer may be due to disruption of intramolecular interactions present in hyp; the change in enthalpy is balanced by a decrease in entropy incurred upon glycosylation. Because the different stereoisomers—Hyp and hyp—project the O‐linked carbohydrates in opposite spatial orientations, these glycosylated amino acids may be useful for understanding of how the projection of a glycan from the peptide or protein backbone exerts its influence. 相似文献
A labor of love : The synthesis of an active pure enzyme (RNase) glycoform by the native chemical ligation of a (glyco)peptide and peptide thioester fragments required numerous painstaking steps: the strategy was optimized, active inteins accessed, redox conditions fine‐tuned, and glycoamino acid building blocks synthesized.
A core–satellite‐structured composite material has been successfully synthesized for capturing glycosylated peptides or proteins. This novel hybrid material is composed of a silica‐coated ferrite “core” and numerous “satellites” of gold nanoparticles with lots of “anchors”. The anchor, 3‐aminophenylboronic acid, designed for capturing target molecules, is highly specific toward glycosylated species. The long organic chains bridging the gold surface and the anchors could reduce the steric hindrance among the bound molecules and suppress nonspecific bindings. Due to the excellent structure of the current material, the trap‐and‐release enrichment of glycosylated samples is quite simple, specific, and effective. Indeed, the composite nanoparticles could be used for enriching glycosylated peptides and proteins with very low concentrations, and the enriched samples can be easily separated from bulk solution by a magnet. By using this strategy, the recovery of glycopeptides and glycoproteins after enrichment were found to be 85.9 and 71.6 % separately, whereas the adsorption capacity of the composite nanoparticles was proven to be more than 79 mg of glycoproteins per gram of the material. Moreover, the new composite nanoparticles were applied to enrich glycosylated proteins from human colorectal cancer tissues for identification of N‐glycosylation sites. In all, 194 unique glycosylation sites mapped to 155 different glycoproteins have been identified, of which 165 sites (85.1 %) were newly identified. 相似文献
The blockwise synthesis of the 2-aminoethyl glycosides of a deca- and a pentadecasaccharide made of two and three repeating units, respectively, of the Shigella flexneri serotype 2a specific polysaccharide is reported. The strategy relies on trifluoromethanesulfonic acid mediated glycosylation of a pentasaccharide building block acting as a glycosyl donor and a potential glycoside acceptor. Both targets were made available in amounts large enough for their subsequent conversion into glycoconjugates. Indeed, efficient elongation of the spacer through an acetylthioacetyl moiety and subsequent conjugation onto a Pan HLA DR-binding epitope (PADRE) T-cell-universal peptide resulted in two fully synthetic neoglycopeptides, which will be evaluated as potential vaccines against S. flexneri serotype 2a infections. 相似文献