首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The symmetrization postulates of quantum mechanics (symmetry for bosons, antisymmetry for fermions) are usually taken to entail that quantum particles of the same kind (e.g., electrons) are all in exactly the same state and therefore indistinguishable in the strongest possible sense. These symmetrization postulates possess a general validity that survives the classical limit, and the conclusion seems therefore unavoidable that even classical particles of the same kind must all be in the same state—in clear conflict with what we know about classical particles. In this article we analyze the origin of this paradox. We shall argue that in the classical limit classical particles emerge, as new entities that do not correspond to the “particle indices” defined in quantum mechanics. Put differently, we show that the quantum mechanical symmetrization postulates do not pertain to particles, as we know them from classical physics, but rather to indices that have a merely formal significance. This conclusion raises the question of whether many discussions in the literature about the status of identical quantum particles have not been misguided.  相似文献   

2.
Paper in honour of Freeman Dyson on the occasion of his 80th birthday. NormalN-body systems relax to equilibrium distributions in which classical kinetic energy components are 1/2kT, but, when inter-particle forces are an inverse cubic repulsion together with a linear (simple harmonic) attraction, the system pulsates for ever. In spite of this pulsation in scale,r(t), other degrees of freedom relax to an ever-changing Maxwellian distribution. With a new time, τ, defined so thatr 2d/dt = d/dτ it is shown that the remaining degrees of freedom evolve with an unchanging reduced Hamiltonian. The distribution predicted by equilibrium statistical mechanics applied to the reduced Hamiltonian is an ever-pulsating Maxwellian in which the temperature pulsates liker -2. Numerical simulation with 1000 particles demonstrate a rapid relaxation to this pulsating equilibrium.  相似文献   

3.
A classical particle in a constant magnetic field undergoes cyclotron motion on a circular orbit. At the quantum level, the fact that all classical orbits are closed gives rise to degeneracies in the spectrum. It is well-known that the spectrum of a charged particle in a constant magnetic field consists of infinitely degenerate Landau levels. Just as for the 1/r and r2 potentials, one thus expects some hidden accidental symmetry, in this case with infinite-dimensional representations. Indeed, the position of the center of the cyclotron circle plays the role of a Runge-Lenz vector. After identifying the corresponding accidental symmetry algebra, we re-analyze the system in a finite periodic volume. Interestingly, similar to the quantum mechanical breaking of CP invariance due to the θ-vacuum angle in non-Abelian gauge theories, quantum effects due to two self-adjoint extension parameters θx and θy explicitly break the continuous translation invariance of the classical theory. This reduces the symmetry to a discrete magnetic translation group and leads to finite degeneracy. Similar to a particle moving on a cone, a particle in a constant magnetic field shows a very peculiar realization of accidental symmetry in quantum mechanics.  相似文献   

4.
We argue the existence of fundamental particles in nature, neutral Light-Particles with spin 1, and rest mass m=1.8⋅10−4me, in addition to electrons, neutrons and protons. We call these particles Light Bosons because they create the electromagnetic field which represents Planck's gas of massless photons together with a gas of Light-Particles in the condensate. In this respect, the condensed Light-Particles, having no magnetic field, represent the constant electric field. In this context, we predict an existence of polariton-plasmon Bose-quasiparticles with effective masses ml10−6me and mr=0.5me, which are induced by interaction of the plasmon field and the resonance Frölich-Schafroth charged bosons with electromagnetic wave in metal. Also, we prove that the enhancement optical transmission into nanoholes in metal films and Surface Enhanced Raman Spectroscopy are provided by a new resonance-polariton Bose-quasiparticles but not model of surface plasmon-polariton. In this Letter, the quantization Fresnel's equations is presented which confirms that Light-Particles in the condensate are concentrated near on the wall of grooves in metallic grating and, in turn, represent as the constant electric field which provides the launching of the surface Frölich-Schafroth bosons on the surface metal holes.  相似文献   

5.
The following theorem is proven: Every lepton with the mass m, electric charge q and spin J belonging to any representation of a non-abelian gauge group must have the magnetic moment μ = qJm?1, electric mean squared radius r2 = qJ(J + 1)m?2 and electric quadrupole moment Q = qJ(2J ? 1)m?2 in the first order of the electromagnetic effects in an arbitrary renormalizable theory with the non-abelian gauge group symmetry which permits the validity of the Gerasimow-Drell-Hearn and Cabibbo-Radicati sum rules. The formula for the magnetic moment applies also for an abelian symmetry and remains valid even if the gauge symmetry is spontaneously broken.  相似文献   

6.
《Physica A》1988,150(2):339-356
We extend the generalized Smoluchowski equation to descrbe the diffusional relaxation of position and orientation in a suspension of interacting spherical colloid particles. Considering a tracer particle which interacts with other particles through spherically symmetric pair potentials and with an external field we obtain a cluster expansion representation of the orientational time correlation functions for the tracer. The one and two body cluster contributions are studied explicitly at short times. Working to first order in volume fraction φ we show that the initial slope of the time correlation functions is described by a modified diffusion coefficient Dr = Dr0(1 −Crφ) where Cr is a number determined by hydrodynamic and potential interactions. We evaluate Cr numerically for spheres with slip-stick hydrodynamic boundary conditions and also for permeable spheres.  相似文献   

7.
We provide a simple physical proof of the reciprocity theorem of classical electrodynamics in the general case of material media that contain linearly polarizable as well as linearly magnetizable substances. The excitation source is taken to be a point-dipole, either electric or magnetic, and the monitored field at the observation point can be electric or magnetic, regardless of the nature of the source dipole. The electric and magnetic susceptibility tensors of the material system may vary from point to point in space, but they cannot be functions of time. In the case of spatially non-dispersive media, the only other constraint on the local susceptibility tensors is that they be symmetric at each and every point. The proof is readily extended to media that exhibit spatial dispersion: For reciprocity to hold, the electric susceptibility tensor χE_mn that relates the complex-valued magnitude of the electric dipole at location rm to the strength of the electric field at rn must be the transpose of χE_nm. Similarly, the necessary and sufficient condition for the magnetic susceptibility tensor is χM_mn = χTM_nm.  相似文献   

8.
The main result in this paper is a new inequality bearing on solutions of the N-body linear Schrödinger equation and of the mean field Hartree equation. This inequality implies that the mean field limit of the quantum mechanics of N identical particles is uniform in the classical limit and provides a quantitative estimate of the quality of the approximation. This result applies to the case of C1,1 interaction potentials. The quantity measuring the approximation of the N-body quantum dynamics by its mean field limit is analogous to the Monge–Kantorovich (or Wasserstein) distance with exponent 2. The inequality satisfied by this quantity is reminiscent of the work of Dobrushin on the mean field limit in classical mechanics [Func. Anal. Appl. 13, 115–123, (1979)]. Our approach to this problem is based on a direct analysis of the N-particle Liouville equation, and avoids using techniques based on the BBGKY hierarchy or on second quantization.  相似文献   

9.
10.
Starting from the tensor product of N irreducible positive energy representations of the Poincaré group describing N free relativistic particles with arbitrary spins and positive masses, we construct an interacting positive energy representation by modifying the total 4-momentum operator. We first make a transformation to a Hilbert space on which the free total 4-momentum operator equals the product of a dimensionless center-of-mass 4-vector ((|k|2 + 1)12, k) and a free “reduced Hamiltonian” Hr0, which is a positive operator acting only on internal variables, and then replace Hr0 by an interacting reduced Hamiltonian Hr = Hr0 + V, where V commutes with the Lorentz group and is such that Hr is a positive operator. The resulting product form is shown to imply that the wave operators interwine the free and interacting representations so that the S-operator is Lorentz invariant. From a physical point of view the scheme is related to the framework first introduced by Bakamjian and Thomas, in which the Hamiltonian and boost generators are modified, but the above procedure makes a mathematically rigorous discussion much simpler. In the spin-zero case we introduce a natural generalization of the pair potentials of nonrelativistic N-particle Schrödinger theory to the present relativistic setting, study its scattering theory, and point out some problems that do not have analogs at the nonrelativistic level. In the spin-12 case we propose, inspired by the Dirac equation, explicit reduced Hamiltonians to describe atomic energy levels and present arguments making plausible that their eigenvalues are in closer agreement with the experimental data than their nonrelativistic counterparts. We also consider extensions to arbitrary spin and, in the spin-12 case, coupling of a quantized radiation field. In view of eventual applications to “completely integrable” one-dimensional field theories the case of one space dimension is studied as well, both in quantum mechanics and in classical mechanics.  相似文献   

11.
This article describes influence of strong (ionizing) electric field on sprayability of magnetic fluid containing colloid particles with size in the range from 10 to 20 nm of magnetite Fe3O4. Magnetic fluids can be based for example on both transformer oil and physiological solution for application in medical using (in human medical science research), that supports a fluid colloidal system. Further component of magnetic fluid is surfactant. It is acting as surface-active substance that prevents from nanometric dimension particle settlement. Magnetic fluid gets off nozzle with diameter in range 0.3–1.0 mm from container in surroundings of ionizing (i.e. strong) electric field (E > 107 V m?1). As a consequence of action of electric field it gives out suppression surface tension in fluid what leads onwards to decomposition of magnetic fluid ligament at the end of nozzle. The diameter of nozzle oneself respects basic theoretical calculations in regards of fluid concentration and thereinbefore its selected size. Magnetic fluid in dependency on its used liquid base has weak-polar till polar orientation polarization character. It gives out sprayability in non-homogeneous electric field E in combination with magnetic field of intensity H. Orientation of vectors Ê and ?, resp. induction of magnetic field B is defined by parallel or vertical direction. Results are confronted with measurements realized explicitly only at action of electric field (variable B = 0). In the case of magnetic field applications with permanent magnet together with electric non-homogeneous field it gives out unconventional dynamics of electrical charging particles of macroscopic dimension. Orientation particle track is influenced by orientation of field vector combinations. This phenomenon develops magneto-dielectric anisotropy, which oneself manifests behaviour of electrophysical quantities characterizing examination system. In consideration of technology utilization of this method it is very important to respect applied magnetic fluid concentration. Electrical characteristics were examined for volume concentration of magnetite particles in the range from 0.125% to 18%. Nevertheless efficiency optimization of given media suggests to boundary concentration of magnetic fluid of 4.0%, when it is in the regions of weak polar till polar material. Electrophysical research refers to exploitation of applied magnetic layer technology on dielectric insulating substances with inorganic origin as well as thin layer technology coating plastic foils created from macromolecular organic substance.  相似文献   

12.
The long-range spin and velocity independent forces of electromagnetic origin which act between any two systems are studied for those cases in which no forces of this type exist to order e2. It is shown that they are uniquely determined by the charge, magnetic moment, and polarizabilities of both systems, not only to the dominant order r?n, but also to the next one r?(n+1). These potentials provide the link between Compton scattering polarizabilities (response to real photons) and classically defined polarizabilities (response to static electromagnetic field). The two definitions are shown to be equivalent for neutral spinless systems; the problems arising for a neutral particle with magnetic moment are studied in detail. The r?(n+1) terms have no classical counterpart, since they are due to the relativistic quantum propagation of the system which carries charge or magnetic moment. The results are of general validity with analyticity, crossing, unitarity, and gauge invariance as only inputs. The most general conclusion is that the polarizabilities represent electromagnetic properties of a system at order e2, as the charge and magnetic moment do at order e. Thus they give the strength of the response to electric and magnetic fields, independently of the specific characteristics of the electromagnetic agent.  相似文献   

13.
The local electric properties at K and Zn sites in the normal, incommensurate and commensurate phases of K2ZnCl4, as derived from a numerical computation of the lattice contributions to the electric potential V(r), electric field intensityE(r) and electric field gradient tensorV αβ(r) are reported. The numerical data obtained at each cationic position were correlated with the experimental39K NMR, Cu2+ and Mn2+ EPR and57Fe Mössbauer results in pure and doped K2ZnCl4. A proportionality between crystal field and zero-field splitting was taken into account for Mn2+, whereas for K+, Cu2+ and Fe3+ ions the electric field gradient is directly related to the crystal field parameter. By this comparison, on computations done in the ionic fractional charge and relaxed lattice approximations, the insertion of probe-species of iron, copper and manganese ions on off-center Zn sites is proposed. The39K electric field gradient tensor calculations in the incommensurate phase fit well with the NMR data reported recently.  相似文献   

14.
The wave function of the Dirac particles in the longitudinal electric field running with the velocity of light is investigated, and the condition of particle capture by this field is presented. The Dirac particles with mass m0 and charge e that were previously stationary are captured by a repulsive field of strength E if the longitudinal field extension exceeds l = m0c2/eE. The captured Dirac particles concentrate, like classical particles, at the distance l from the forefront of the running field, but unlike classical particles, the nth part of the Dirac particles is not captured by the field, where n = exp(−l/2λ0) and λ0 is the Compton wavelength of the particle. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 25–33, October, 2006.  相似文献   

15.
The theory of the interaction of electrons with a high-frequency electric field in one-dimensional two-barrier nanostructures with symmetric barriers of finite height and widths was developed. An exact solution to the Schrödinger equation was found for electrons in this nanostructure in the absence of high-frequency electric field. An analytical expression for the direct current I 0 induced in this structure by an incident electron flux with energy ε differing slightly from the resonant level energy ε r (|ε ? ε r | << ε r ) was derived. In the small-signal approximation, the active (field-phased) component I c of the alternating electric current was calculated. At ε > ε r , the current I c is negative in the entire frequency range, which suggests the possibility of ac electric field amplification and generation in the two-barrier resonant-tunneling structure with the barriers of finite height and width. Within the applicability of the theory (?ω << ε r ), the frequency at which amplification and generation of the ac electric field are possible reaches ω ? 1013 s ?1; the power transferred by electrons to the field is ~1 W/cm2.  相似文献   

16.
We show that the large N limits of a wide variety of vector models may be obtained by studying the classical equations of motion. In particular, we derive a constraint which allows us to choose solutions of the classical field equations which directly give the correlation functions of N → ∞ quantum system. Models studied here include quantum mechanics on a sphere, two-dimensional linear and nonlinear O(N) field theories and the CPN model.  相似文献   

17.
The electronic and ionic velocity distributions and densities of an equilibrium two component plasma at distances from a test particle (electron or ion) smaller than the interparticle distance, are derived using a technique developed recently by the author. In the case of particles repelled by the test particle the results agree with the results obtained by integrating the Gibbs distribution. In the case of particles attracted by the test particle however, the velocity distribution has the form of a translated maxwellian with an empty sphere in the middle and the asymptotic form of the density as r → 0 is given by na(r) ~r-12. By the latter formula the classical problem of stability of matter is locally resolved without using short distance repulsive potentials.  相似文献   

18.
We consider the classical stellar dynamic (Vlasov) equation with a so-called Manev correction (based on a pair potential γ/r + ε/r 2). For the pure Manev potential γ = 0 we discuss both the continuous case and the N-body problem and show that global solutions will not exist if the initial energy is negative. Certain global solutions can be constructed from local ones by a transformation which is peculiar for the ε/r 2 law. Moreover, scaling arguments are used to show that Boltzmann collision terms are meaningful in conjunction with Manev force terms. In an appendix, a formal justification of the Manev correction based on the quasirelativistic Lagrangian formalism for the motion of a particle in a central force field is given.  相似文献   

19.
The motion of an electric charge in the field of a magnetic monopole is described by means of a Lagrangian model written in terms of the Clifford algebra of the physical space. The equations of motion are written in terms of a radial equation (involving r=|r|, where r(t) is the charge trajectory) and a rotor equation (written in terms of an unitary operator spinor R). The solution corresponding to the charge trajectory in the field of a magnetic monopole is given in parametric form. The model can be generalized in order to describe the motion of a charge in the field of a magnetic monopole and other additional central forces, and as an example, we discuss the classical ones involving linear and inverse square interactions.  相似文献   

20.
It is shown thatr-particle irreducible kernels in the two-dimensional λφ4?1/4φ2?μφ quantum field theory have (r+1)-particle decay for |μ|≦λ2?1. As a consequence there is an upper mass gap and, in the subspace of two-particle states, a bound state. The proof extends Spencer's expansion [20] to handle fluctuations between the two wells of the classical potential. A new method for resumming the low temperature cluster expansion is introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号