首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exact periodic solutions for the semiclassical Jaynes-Cummings model without the assumption of the rotating-wave approximation are studied. They are valid for some specific values of the coupling constant, detuning parameter and the energy of the system. The behaviour of the system in the vicinity of this special solution is studied numerically. By computation of the Fourier spectrum, it is shown that the behaviour of the system changes from a non-chaotic to a chaotic one when the energy of the system increases.  相似文献   

2.
We study a rate-equation model for two coupled molecular lasers with a saturable absorber. A numerical bifurcation study shows the existence of isolas for in-phase periodic solutions as physical parameters change. In addition there are other non-isola families of in-phase, anti-phase and intermediate-phase periodic oscillations. In this model the unstable periodic orbits belonging to the in-phase isolas constitute a skeleton of the attractor, when chaotic synchronization sets in for a set of physically relevant control parameters.  相似文献   

3.
Different methods to utilize the rich library of patterns and behaviors of a chaotic system have been proposed for doing computation or communication. Since a chaotic system is intrinsically unstable and its nearby orbits diverge exponentially from each other, special attention needs to be paid to the robustness against noise of chaos-based approaches to computation. In this paper unstable periodic orbits, which form the skeleton of any chaotic system, are employed to build a model for the chaotic system to measure the sensitivity of each orbit to noise, and to select the orbits whose symbolic representations are relatively robust against the existence of noise. Furthermore, since unstable periodic orbits are extractable from time series, periodic orbit-based models can be extracted from time series too. Chaos computing can be and has been implemented on different platforms, including biological systems. In biology noise is always present; as a result having a clear model for the effects of noise on any given biological implementation has profound importance. Also, since in biology it is hard to obtain exact dynamical equations of the system under study, the time series techniques we introduce here are of critical importance.  相似文献   

4.
In this paper we explore the dynamics of a one-dimensional Keller–Segel type model for chemotaxis incorporating a logistic cell growth term. We demonstrate the capacity of the model to self-organise into multiple cellular aggregations which, according to position in parameter space, either form a stationary pattern or undergo a sustained spatio-temporal sequence of merging (two aggregations coalesce) and emerging (a new aggregation appears). This spatio-temporal patterning can be further subdivided into either a time-periodic or time-irregular fashion. Numerical explorations into the latter indicate a positive Lyapunov exponent (sensitive dependence to initial conditions) together with a rich bifurcation structure. In particular, we find stationary patterns that bifurcate onto a path of periodic patterns which, prior to the onset of spatio-temporal irregularity, undergo a “periodic-doubling” sequence. Based on these results and comparisons with other systems, we argue that the spatio-temporal irregularity observed here describes a form of spatio-temporal chaos. We discuss briefly our results in the context of previous applications of chemotaxis models, including tumour invasion, embryonic development and ecology.  相似文献   

5.
In certain (2+1)-dimensional dynamical systems, the braiding of periodic orbits provides a framework for analyzing chaos in the system through application of the Thurston-Nielsen classification theorem. Periodic orbits generated by the dynamics can behave as physical obstructions that "stir" the surrounding domain and serve as the basis for this topological analysis. We provide evidence that, even in the absence of periodic orbits, almost-cyclic regions identified using a transfer operator approach can reveal an underlying structure that enables topological analysis of chaos in the domain.  相似文献   

6.
《Physics letters. A》1999,254(5):275-278
The effect of applying a periodic perturbation to an accessible parameter of a high-dimensional (coupled-Lorenz) chaotic system is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable periodic orbits of the chaotic system can result in limit cycles or significantly reduced dimension for relatively small perturbations.  相似文献   

7.
We analytically and numerically investigate the solution to the stationary Gross-Pitaevskii equation for a one-dimensional potential of the optical lattice in the case of repulsive nonlinearity. From the mathematical viewpoint, this problem is similar to the well-known problem of the classical mathematical Kapitza pendulum perturbed by a weak high-frequency force. At certain values of the parameters, dynamic chaos is produced in the considered problem. It is modeled analytically by a nonlinear diffusion equation.  相似文献   

8.
In this work we characterize experimentally the transition between periodic rotating waves and synchronized chaos in a ring of unidirectionally coupled Lorenz oscillators by means of electronic circuits. The study is complemented by numerical and theoretical analysis, and the intermediate states and their transitions are identified. The route linking periodic behavior with synchronous chaos involves quasiperiodic behavior and a type of high-dimensional chaos known as chaotic rotating wave. The high-dimensional chaotic behavior is characterized, and is shown to be composed actually by three different behaviors. The experimental study confirms the robustness of this route.  相似文献   

9.
Various forms of chaotic synchronization have been proposed as ways of realizing associative memories and/or pattern recognizers. To exploit this kind of synchronization phenomena in temporal pattern recognition, a chaotic dynamical system representing the class of signals that are to be recognized must be established. This system can be determined by means of identification techniques. The fulfillment of the chaotic condition could be imposed as a constraint. However, it is shown here that, even for a very simple identification algorithm, chaos emerges by itself, allowing us to model the diversity of nearly periodic signals.  相似文献   

10.
Shrimp-shaped periodic regions embedded in chaotic regions in two-dimensional parameter spaces are of specific interest for physical and biological systems. We provide the first observation of these shrimp-shaped stability regions in a parameter space of a continuous time-delayed population model, obtained by taking the delays as bifurcation parameters. The parameter space organization is governed by the presence of infinitely many periodicity hubs, which trigger the spiraling organization of these shrimp-shaped periodic regions around them. We provide evidence that this spiraling organization in the parameter space is a consequence of the existence of homoclinic orbits in the phase space.  相似文献   

11.
12.
In this study, we propose a remarkably simple oscillator that exhibits extremely complicated behaviors. The second-order nonautonomous differential equation discussed in this Letter is considered to be one of the simplest dynamics that can produce mixed-mode oscillations (MMOs) and chaos. Our model uses a Bonhoeffer-van der Pol (BVP) oscillator under weak periodic perturbation. The parameter set of the BVP equation is chosen such that a focus and a relaxation oscillation coexist when no perturbation is applied. Under weak periodic perturbation, various types of MMOs and chaos with remarkably complicated waveforms are observed.  相似文献   

13.
We report new results on a dynamical model of serrated yielding. These essentially pertain to the full spectrum of Lyapunov exponents of the non-linear (chaotic) model and fractal characterization of the associated strange attractor. The power spectrum of scalar time series extracted from the phase space trajectories decays exponentially with increase of frequency and the decay constant is found proportional to the Kolmogorov-Sinai entropy.  相似文献   

14.
15.
16.
A four-mode model of convection in a rotating fluid layer is studied. The model is an extension of the Lorenz model of Rayleigh-Bénard convection, the extra mode accounting for the regeneration of vorticity by rotation. Perturbation theory is applied to show that the Hopf bifurcations from conductive and steady convective solutions can be either supercritical or subcritical. Perturbation theory is also used at large Rayleigh numbersr to predict novel behavior. Supercritical oscillatory convection of finite amplitude is found by numerical integration of the governing equations. The general picture is of a series of oscillatory solutions stable over larger intervals, interspersed by short bursts of chaos.  相似文献   

17.
We argue that tumor growth, considered as a dynamical system, is chaotic. Chaotic models are proposed which fit the observations well. Some of these models treat the tumor as a fractal.On leave of absence from Mathematics Department, Faculty of Science, Mansoura, Egypt.  相似文献   

18.
A simple model of sputtering from spikes is described based upon the solution of a general heat conduction equation for spherical symmetry. The model accounts for many anomalies observed in energy spectra of sputtered atoms.This work was carried out as a part of Research Project M.R. I/5  相似文献   

19.
A four-dimensional four-parameter Chua model with cubic nonlinearity is studied applying numerical continuation and numerical solutions methods. Regarding numerical solution methods, its dynamics is characterized on Lyapunov and isoperiodic diagrams and regarding numerical continuation method, the bifurcation curves are obtained. Combining both methods the bifurcation structures of the model were obtained with the possibility to describe the shrimp-shaped domains and their endoskeletons. We study the effect of a parameter that controls the dimension of the system leading the model to present transient chaos with its corresponding basin of attraction being riddled.  相似文献   

20.
We study a parametrically damped two-well Duffing oscillator, subjected to a periodic string of symmetric pulses. The order-chaos threshold when altering solely the width of the pulses is investigated theoretically through Melnikov analysis. We show analytically and numerically that most of the results appear independent of the particular wave form of the pulses provided that the transmitted impulse is the same. By using this property, the stability boundaries of the stationary solutions are determined to first approximation by means of an elliptic harmonic balance method. Finally, the bifurcation behavior at the stability boundaries is determined numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号