首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The synthesis and characterization of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone (CDOSC) complexes are reported. The ligand CDOSC yields: [ML2 Cl2] and [ML2 Cl2] Cl type complexes, where M = CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and HgII, L = CDOSC. Structures of the complexes were determined using elemental analysis, molar conductivity, magnetic measurements, i.r. and electronic, as well as n.m.r spectra. CDOSC acts as a bidentate ligand in all the complexes. All the newly synthesized metal complexes, as well as the ligand, were screened for their antibacterial activity. All the complexes exhibit strong inhibitory action against Gram (+) bacteria Staphylococcus aureus and Gram (−) bacteria Escherichia coli. The antibacterial activities of the complexes are stronger than those of the ligand CDOSC itself.  相似文献   

2.
Summary New ternary complexes of first-row transition metal ions of composition [M(salox)(acac)] [where M=VOIV, MnII, CoII, CuII and ZnII, acacH=acetylacetone, saloxH=salicylaldoxime] and their bis-pyridine adducts have been prepared. Molar conductivity measurements indicate that the complexes are non-electrolytes, while magnetic and electronic spectral studies show an essentially octahedral stereochemistry except for the nickel(II) complex which exhibits a square planar-octahedral equilibrium. The e.s.r. spectra show that the complexes are monomeric in CHCl3 solution.  相似文献   

3.
CoII,III, NiII, and CuII complexes of new dehydroacetic acid N4-substituted thiosemicarbazones have been studied. The substituted thiosemicarbazones, N4-dimethyl-(DA4DM), N4-diethyl-(DA4DE), 3-piperidyl-(DApip) and 3-hexamethyleneiminyl-(DAhexim), when reacted with the metal chlorides, produced two CoII complexes, [Co(DA4DE)Cl2] and [Co(DAhexim)2Cl2]; two CoIII complexes, [Co(DA4DM-H)2Cl] and [Co(DApip-H)(DApip-2H)]; a paramagnetic NiII complex, [Ni(DAhexim)(DAhexim-H)Cl]; three diamagnetic NiII complexes, [Ni(DA4DM-H)Cl], [Ni(DA4DE-H)Cl] and [Ni(DApip-H)Cl]; and four CuII complexes with the analogous stoichiometry of the latter three NiII complexes. These new thiosemicarbazones have been characterized by their melting points, as well as i.r., electronic and 1H-n.m.r. spectra. The metal complexes have been characterized by i.r. and electronic spectra, and when possible, n.m.r. and e.s.r. spectra, as well as elemental analyses, molar conductivities, and magnetic susceptibilities. The crystal and molecular structure of the four-coordinate CuII complex, [Cu(DAhexim-H)Cl] has been determined by single crystal X-ray diffraction and the anionic ligand coordinates via an oxygen of the dehydroacetic acid and the thiosemicarbazone moiety's imine nitrogen and thione sulfur.  相似文献   

4.
Summary Reaction of one mole of acetylacetone with two moles of 4-phenylthiosemicarbazide yields the unusual Schiff base, MeC(=N-NHCSNHPh)CH2C(=NNHCSNHPh)Me. APT = H2L) acetylacetone bis(4-phenylthiosemicarbazone). The complexes of CoII, NiII, CuII, ZnII and UVIO2 have been prepared and characterized by analytical, i.r., electronic spectral and magnetic measurements. The CoII, NiII and CuII complexes have been assigned square-planar stereochemistry on the basis of magnetic and spectroscopic studies. The ligand is a neutral or dibasic quadridentate SNNS donor as revealed by i.r. spectral studies.  相似文献   

5.
The synthesis of CoII, NiII, CuII and CdII complexes of 2-furfural 4-phenyl semicarbazone (FPSC) with stoichiometric formulae: [M(FPSC)2X2] (M = Co, Ni or Cu; X = Cl or Br), [CuCl2(FPSC)] and [(CdCl2)2(FPSC)] has been obtained for the first time. The complexes were characterized by elemental analysis, molar conductivity, magnetic measurements, i.r., far i.r. and electronic spectra. FPSC is deduced to act as a bidentate ligand in the CoII, NiII and CuII complexes and as a tetradentate one in [(CdCl2)2(FPSC)].  相似文献   

6.
Cefazolin (Hcefaz) interacts with transition metal(II) ions to give [M(cefaz)Cl] complexes (M = MnII, CoII, NiII, CuII, ZnII, PdII) and [Ag2(cefaz)2Cl2] which were characterized by physicochemical and spectroscopic methods. Their i.r. and the 1H-n.m.r. spectra suggest that cefazolin behaves as a monoanionic tetradentate ligand. The complexes have been screened for antibacterial activity and the results are compared with the activity of cefazolin.  相似文献   

7.
The binucleating ligand LH3, 2,6-diformyl-p-cresol-bis(phenylthioacetyldrazone), a Schiff base condensation product of 2,6-diformyl-p-cresol and phenylthioacetyldrazide forms complexes of the [M2ClL] type with CoII, NiII and CuII ions, which were characterized by elemental analysis, magnetic susceptibility, electronic spectra, molar conductance, i.r., n.m.r., e.p.r., t.g. and FAB mass spectral measurements. Sub-normal magnetic moments indicate the operation of antiferromagnetic coupling between the metal centres. The ligand and its copper complex show a pronounced fungistatic activity.  相似文献   

8.
A novel tetradentate nitrogen donor [N4] macrocyclic ligand, i.e. 1,3,4,8,9,11-hexaaza-2,10-dithia-5,12-dioxo-7,14-diphenyl-cyclotetradecane (L), has been synthesized. Manganese(II),cobalt(II), nickel(II) and copper(II) complexes with this ligand have been prepared and subjected to elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, 1H-n.m.r. (Ligand), i.r., electronic, and e.p.r. spectral studies. On the basis of molar conductance the complexes may be formulated as [M(L)X2] [where M = MnII, CoII, NiII, and CoII,and X = Cl & NO 3 ] due to their nonelectrolytic nature in dimethylformamide (DMF). All the complexes are of the high spin type and are six coordinated. On the basis of i.r., electronic and e.p.r. spectral studies an octahedral geometry has been assigned to MnII, and II, II, complexes, and tetragonal for copper(II) complexes. The antimicrobial activities of the ligand and its complexes, as growth inhibiting agents, have been screened in vitro against several species of bacteria and plant pathogenic fungi.  相似文献   

9.
Complexes of CuII, NiII, CoII and FeIII with Schiff-bases derived by condensing o-aminophenol and ethanolamine with dibenzoylmethane, benzoylacetone, acetylacetone and thenoyltrifluoroacetone have been prepared and characterized by elemental analysis, electrical conductivity, magnetic moment, d.t.a. and t.g.a. measurements, i.r., u.v.–vis., e.s.r. and Mössbauer spectra. All the complexes are non-electrolytes. Those with 1:2 metal:ligand ratios have an octahedral or distorted octahedral environment. Square-planar, Td or D2d structures have been proposed for the 1:1 complexes. The Mössbauer spectrum of the FeIII complex confirms its high-spin octahedral stereochemistry.  相似文献   

10.
Complexes of CrIII, MnII, FeIII, CoII, NiII and CuII containing a macrocyclic pentadentate nitrogen–sulphur donor ligand have been prepared via reaction of a pentadentate ligand (N3S2) with transition metal ions. The N3S2 ligand was prepared by [1 + 1] condensation of 2,6-diacetylpyridine with 1,2-di(o-aminophenylthio(ethane. The structures of the complexes have been elucidated by elemental analyses, molar conductance, magnetic susceptibility measurements, i.r., electronic and e.p.r. spectral studies. The complexes are of the high spin type and are six-coordinate.  相似文献   

11.
Summary CuII, NiII, CoII, ZnII and PdII complexes of tridentate Schiff base ligands derived from the condensation of benzoic acid hydrazides with 2-aminonicotinaldehyde have been prepared and characterized. For M=Cu, Ni, Co and Zn the complexes were formulated as [M(ligand)(H2O)X] (X=Cl, Br), with a distorted octahedral geometry and tridentate Schiff base ligands. The Pd complexes were formulated as Pd(ligand)Cl2, with square planar geometries and bidentate Schiff base ligands. The e.s.r. spectra of the CuII complexes are discussed.  相似文献   

12.
Summary Complexes of the potentially tetradentate ligand isonitroso-acetylacetone dithiosemicarbazone (inbtH2) of formulae [Ti(inbtH2)Cl2]Cl2, [M(inbt)], where M = VIV O, MnII, NiII or ZnII, [M(inbtH2)X2], where M = CoII and X = Cl, or M = NiII and X = Cl, Br or I, and [M(inbtH2)Cl2]Cl, where M = CrIII or FeIII, have been prepared and characterized by physico-chemical and spectroscopic methods. In all the compounds the metal is coordinated by the thiocarbonyl sulphur and imine nitrogen, as revealed by i.r. studies. The n.m.r. spectra of the complexes of NiII and ZnII confirm coordination through nitrogen. Possible structures for the complexes are proposed. The Mössbauer spectrum of the FeIII complex is discussed.  相似文献   

13.
Summary The stereochemistry and complexation behaviour of diphenyl diketone monothiosemicarbazone (DKTS) with CuII, CoII, NiII, CdII, ZnII, PdII, PtII, RuIII, RhIII and IrIII have been investigated by means of chemical, magnetic and spectral (i.r., Raman, 1H- and 13C-n.m.r. and electronic) studies. The ligand forms complexes of the M(DKTS)2 type with NiII, CuII and CoII having a distorted octahedral geometry. The absence of a v(M—X) band in the i.r. spectra, coupled with their 1:1 electrolytic conductances, suggests that RuIII, RhIII and IrIII form octahedral complexes of the [M(DKTS)2]Cl type. A four-coordinate structure involving bridging halides is proposed for the ZnII, CdII, PdII and PtII complexes, which have relatively low v(M—X) vibration modes.  相似文献   

14.
Mixed ligand complexes of CoII, NiII and CuII with cysteine and 4-substituted thiosemicarbazides (l 1l 3) have been synthesized. The elemental analyses, molar conductance, spectra [electronic, i.r., 1H-n.m.r., mass] and thermal studies were used to characterize the isolated complexes. Cyclic voltammetry was used to study the electrochemical behaviour of the NiII complexes. The i.r. and 1H-n.m.r. showed that cysteine is deprotonated in the complex and acts as a binegative ligand coordinating through thiol sulphur and COOH groups. Also, thiosemicarbazides act as a bidentate ligand, coordination via NH2 and (C=S) groups. Square-planar geometry has been proposed for CoII, NiII and CuII ternary complexes.  相似文献   

15.
Summary A variety of metal(II) complexes of 2-carbethoxypyridine (L) have been prepared and characterised. With metal(II) chlorides the bis complexes can be formulated [ML2Cl2]o (M=CuII, NiII, CoII, FeII or MnII). The complexes are six-coordinate with 2-carbethoxypyridine acting as a bidentate ligandvia the pyridine nitrogen and the carbonyl group of the ester. The chloro complexes are nonelectrolytes in nitroethane; magnetic susceptibility measurements, i.r. and d-d electronic spectra are reported. With metal(II) perchlorate salts the complexes can be formulated as six-coordinate [ML2 (OH2)2] [ClO4]2 species containing ionic perchlorate. The ester exchanges of some of these complexes with a variety of primary alcohols have been investigated.  相似文献   

16.
Metal-mediated condensation of o-phenylenediamine with bisacetylacetone-ethylenediimine yields 14-membered tetraaza macrocyclic six-coordinate complexes of the type [M(mac)Cl2],[M(mac)SO4·H2O] (where M = FeII, CoII and CuII; MAC = macrocyclic ligand formed in the template reaction). The metal ions are coordinated by four azomethine nitrogen atoms bridged by acetylacetone moieties. The electrical conductance magnetic moments, electronic and IR spectral data of all complexes are discussed.  相似文献   

17.
Summary The formation constants of 1-phenyl-3-thiazole-2-ylthiourea complexes with some bivalent metal ions (CuII, NiII, ZnII and MnII) have been determined in 75% EtOH–H2O. Complexes of CuII, NiII, ZnII, HgII and PdII have been isolated and characterized by conductance, i.r., electronic spectra and magnetic measurements. The ligand forms ML complexes with CuII and HgII and ML2 with NiII, ZnII and PdII, where L is the uninegatively charged bidentate ligand and binds through the ring nitrogen and thiocarbonyl sulphur atoms.  相似文献   

18.
Summary The synthesis and characterization of some CoII, NiII and CuII complexes with a nitrogen-oxygen donor macrocyclic ligand is reported. Analytical data, i.r. and visible spectra are compatible with an octahedral or distorted octahedral coordination around the metal. For each of the CoL(NCS)2 and NiL(NCS)2 complexes, two crystalline forms were obtained, having different i.r. absorptions for the thiocyanate groups and different x-ray powder diffraction spectra; the pairs of Co-Ni complexes appear to be isostructural.  相似文献   

19.
A series of d‐block metal complexes of the recently reported coordinating neutral radical ligand 1‐phenyl‐3‐(pyrid‐2‐yl)‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl ( 1 ) was synthesized. The investigated systems contain the benzotriazinyl radical 1 coordinated to a divalent metal cation, MnII, FeII, CoII, or NiII, with 1,1,1,5,5,5‐hexafluoroacetylacetonato (hfac) as the auxiliary ligand of choice. The synthesized complexes were fully characterized by single‐crystal X‐ray diffraction, magnetic susceptibility measurements, and electronic structure calculations. The complexes [Mn( 1 )(hfac)2] and [Fe( 1 )(hfac)2] displayed antiferromagnetic coupling between the unpaired electrons of the ligand and the metal cation, whereas the interaction was found to be ferromagnetic in the analogous NiII complex [Ni( 1 )(hfac)2]. The magnetic properties of the complex [Co( 1 )(hfac)2] were difficult to interpret owing to significant spin–orbit coupling inherent to octahedral high‐spin CoII metal ion. As a whole, the reported data clearly demonstrated the favorable coordinating properties of the radical 1 , which, together with its stability and structural tunability, make it an excellent new building block for establishing more complex metal–radical architectures with interesting magnetic properties.  相似文献   

20.
Summary Pyridine-4-carboxaldehyde thionicotinoyl hydrazone (4-PTNH) forms 1:1 adducts with metal(II) halides and 1:2 complexes (metal to ligand) with metal(II) thiocyanates. Magnetic and spectral studies indicate polymeric octahedral geometry for M(4-PTNH)X2 (M=CoII or CuII, X=Cl; M=NiII, X=Cl, Br or I), five coordinate geometry for Co(4-PTNH)X2 (X=Br or I) and octahederal geometry for [M(4-PTNH)2(NCS)2] (M=CoII or NiII). I.r. spectral studies show that 4-PTNH acts as a neutral bidentate ligand in all the complexes, the bonding sites being the thione sulphur and azomethine nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号