首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Let \(\Phi _{n}(x)=e^x-\sum _{j=0}^{n-2}\frac{x^j}{j!}\) and \(\alpha _{n} =n\omega _{n-1}^{\frac{1}{n-1}}\) be the sharp constant in Moser’s inequality (where \(\omega _{n-1}\) is the area of the surface of the unit \(n\)-ball in \(\mathbb {R}^n\)), and \(dV\) be the volume element on the \(n\)-dimensional hyperbolic space \((\mathbb {H}^n, g)\) (\(n\ge {2}\)). In this paper, we establish the following sharp Moser–Trudinger type inequalities with the exact growth condition on \(\mathbb {H}^n\):
For any \(u\in {W^{1,n}(\mathbb {H}^n)}\) satisfying \(\Vert \nabla _{g}u\Vert _{n}\le {1}\), there exists a constant \(C(n)>0\) such that
$$\begin{aligned} \int _{\mathbb {H}^n}\frac{\Phi _{n}(\alpha _{n}|u|^{\frac{n}{n-1}})}{(1+|u|)^{\frac{n}{n-1}}}dV \le {C(n)\Vert u\Vert _{L^n}^{n}}. \end{aligned}$$
The power \(\frac{n}{n-1}\) and the constant \(\alpha _{n}\) are optimal in the following senses:
  1. (i)
    If the power \(\frac{n}{n-1}\) in the denominator is replaced by any \(p<\frac{n}{n-1}\), then there exists a sequence of functions \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but
    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha _{n}(|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV \rightarrow {\infty }. \end{aligned}$$
     
  2. (ii)
    If \(\alpha >\alpha _{n}\), then there exists a sequence of function \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but
    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha (|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV\rightarrow {\infty }, \end{aligned}$$
    for any \(p\ge {0}\).
     
This result sharpens the earlier work of the authors Lu and Tang (Adv Nonlinear Stud 13(4):1035–1052, 2013) on best constants for the Moser–Trudinger inequalities on hyperbolic spaces.
  相似文献   

2.
In Advances in Mathematical Physics (2011) we showed that the weighted shift \(z^{p}\frac{d^{p+1}}{dz^{p+1}} (p=0, 1, 2,\ldots )\) acting on classical Bargmann space \(\mathbb {B}_{p}\) is chaotic operator. In Journal of Mathematical physics (2014), we constructed an chaotic weighted shift \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1} (p=0, 1, 2,\ldots )\) on some lattice Fock–Bargmann \(\mathbb {E}_{p}^{\alpha }\) generated by the orthonormal basis \( {e_{m}^{(\alpha ,p)}(z) = e_{m}^{\alpha } ; m=p, p+1,\ldots }\) where \( {e_{m}^{\alpha }(z) = (\frac{2\nu }{\pi })^{1/4}e^{\frac{\nu }{2}z^{2}}e^{-\frac{\pi ^{2}}{\nu }(m +\alpha )^{2} +2i\pi (m +\alpha )z}; m \in \mathbb {N}}\) with \(\nu , \alpha \) are real numbers; \(\nu > 0\), \(\mathbb {M}\) is an weighted shift and \(\mathbb {M^{*}}\) is the adjoint of the \(\mathbb {M}\). In this paper we study the chaoticity of tensor product \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1}\otimes z^{p}\frac{d^{p}}{dz^{p+1}} (p=0, 1, 2, \ldots )\) acting on \(\mathbb {E}_{p}^{\alpha }\otimes \mathbb {B}_{p}\).  相似文献   

3.
We consider the following fractional \( p \& q\) Laplacian problem with critical Sobolev–Hardy exponents
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}_{p} u + (-\Delta )^{s}_{q} u = \frac{|u|^{p^{*}_{s}(\alpha )-2}u}{|x|^{\alpha }}+ \lambda f(x, u) &{} \text{ in } \Omega \\ u=0 &{} \text{ in } \mathbb {R}^{N}{\setminus } \Omega , \end{array} \right. \end{aligned}$$
where \(0<s<1\), \(1\le q<p<\frac{N}{s}\), \((-\Delta )^{s}_{r}\), with \(r\in \{p,q\}\), is the fractional r-Laplacian operator, \(\lambda \) is a positive parameter, \(\Omega \subset \mathbb {R}^{N}\) is an open bounded domain with smooth boundary, \(0\le \alpha <sp\), and \(p^{*}_{s}(\alpha )=\frac{p(N-\alpha )}{N-sp}\) is the so-called Hardy–Sobolev critical exponent. Using concentration-compactness principle and the mountain pass lemma due to Kajikiya [23], we show the existence of infinitely many solutions which tend to be zero provided that \(\lambda \) belongs to a suitable range.
  相似文献   

4.
In this paper, we study the harmonic equation involving subcritical exponent \((P_{\varepsilon })\): \( \Delta u = 0 \), in \(\mathbb {B}^n\) and \(\displaystyle \frac{\partial u}{\partial \nu } + \displaystyle \frac{n-2}{2}u = \displaystyle \frac{n-2}{2} K u^{\frac{n}{n-2}-\varepsilon }\) on \( \mathbb {S}^{n-1}\) where \(\mathbb {B}^n \) is the unit ball in \(\mathbb {R}^n\), \(n\ge 5\) with Euclidean metric \(g_0\), \(\partial \mathbb {B}^n = \mathbb {S}^{n-1}\) is its boundary, K is a function on \(\mathbb {S}^{n-1}\) and \(\varepsilon \) is a small positive parameter. We construct solutions of the subcritical equation \((P_{\varepsilon })\) which blow up at two different critical points of K. Furthermore, we construct solutions of \((P_{\varepsilon })\) which have two bubbles and blow up at the same critical point of K.  相似文献   

5.
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process \(\mathsf {G}\) and its reduced Palm measures \(\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}\), namely, reduced Palm measures \(\mathsf {G}_{\mathbf {x}}\) and \(\mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x} \in \mathbb {C}^{\ell }\) and \(\mathbf {y} \in \mathbb {C}^{n}\) are mutually absolutely continuous if and only if \(\ell = n\); they are singular each other if and only if \(\ell \not = n\). Furthermore, we give an explicit expression of the Radon–Nikodym density \(d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }\).  相似文献   

6.
The goal of this paper is the study of a transformation concerning the general K-fold finite sums of the form
$$\begin{aligned} \sum _{N\ge n_1\ge \cdots \ge n_K\ge 1}\frac{1}{b_{n_K}}\cdot \prod _{j=1}^{K-1}\frac{1}{a_{n_j}}, \end{aligned}$$
where \((K,N)\in \mathbb {N}^2\) and \(\{a_n\}_{n=1}^{\infty }\), \(\{b_n\}_{n=1}^{\infty }\) are appropriate real sequences. In the application part of our paper we apply the developed transformation to two special parametric multiple zeta-type series that generalize the well-know formula \(\zeta ^\star (\{2\}_K,1)=2\zeta (2K+1)\), \(K\in \mathbb {N}\). As a corollary of our parametric results, we also prove several sum formulas involving multiple zeta-star values.
  相似文献   

7.
We study the discrete spectrum of the Robin Laplacian \(Q^{\Omega }_\alpha \) in \(L^2(\Omega )\), \(u\mapsto -\Delta u, \quad D_n u=\alpha u \text { on }\partial \Omega \), where \(D_n\) is the outer unit normal derivative and \(\Omega \subset {\mathbb {R}}^{3}\) is a conical domain with a regular cross-section \(\Theta \subset {\mathbb {S}}^2\), n is the outer unit normal, and \(\alpha >0\) is a fixed constant. It is known from previous papers that the bottom of the essential spectrum of \(Q^{\Omega }_\alpha \) is \(-\alpha ^2\) and that the finiteness of the discrete spectrum depends on the geometry of the cross-section. We show that the accumulation of the discrete spectrum of \(Q^\Omega _\alpha \) is determined by the discrete spectrum of an effective Hamiltonian defined on the boundary and far from the origin. By studying this model operator, we prove that the number of eigenvalues of \(Q^{\Omega }_\alpha \) in \((-\infty ,-\alpha ^2-\lambda )\), with \(\lambda >0\), behaves for \(\lambda \rightarrow 0\) as
$$\begin{aligned} \dfrac{\alpha ^2}{8\pi \lambda } \int _{\partial \Theta } \kappa _+(s)^2\mathrm {d}s +o\left( \frac{1}{\lambda }\right) , \end{aligned}$$
where \(\kappa _+\) is the positive part of the geodesic curvature of the cross-section boundary.
  相似文献   

8.
Let k be an odd positive integer, L a lattice on a regular positive definite k-dimensional quadratic space over \(\mathbb {Q}\), \(N_L\) the level of L, and \(\mathscr {M}(L)\)  be the linear space of \(\theta \)-series attached to the distinct classes in the genus of L. We prove that, for an odd prime \(p|N_L\), if \(L_p=L_{p,1}\,\bot \, L_{p,2}\), where \(L_{p,1}\) is unimodular, \(L_{p,2}\) is (p)-modular, and \(\mathbb {Q}_pL_{p,2}\) is anisotropic, then \(\mathscr {M}(L;p):=\) \(\mathscr {M}(L)\) \(+T_{p^2}.\) \(\mathscr {M}(L)\)  is stable under the Hecke operator \(T_{p^2}\). If \(L_2\) is isometric to \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle 2\varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}1\\ 1&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) with \(\varepsilon \in \mathbb {Z}_2^{\times }\) and \(\kappa :=\frac{k-1}{2}\), then \(\mathscr {M}(L;2):=T_{2^2}.\mathscr {M}(L)+T_{2^2}^2.\,\mathscr {M}(L)\) is stable under the Hecke operator \(T_{2^2}\). Furthermore, we determine some invariant subspaces of the cusp forms for the Hecke operators.  相似文献   

9.
Given \(1\le q \le 2\) and \(\alpha \in \mathbb {R}\), we study the properties of the solutions of the minimum problem
$$\begin{aligned} \lambda (\alpha ,q)=\min \left\{ \dfrac{\displaystyle \int _{-1}^{1}|u'|^{2}dx+\alpha \left| \int _{-1}^{1}|u|^{q-1}u\, dx\right| ^{\frac{2}{q}}}{\displaystyle \int _{-1}^{1}|u|^{2}dx}, u\in H_{0}^{1}(-1,1),\,u\not \equiv 0\right\} . \end{aligned}$$
In particular, depending on \(\alpha \) and q, we show that the minimizers have constant sign up to a critical value of \(\alpha =\alpha _{q}\), and when \(\alpha >\alpha _{q}\) the minimizers are odd.
  相似文献   

10.
Let \(k\in \mathbb {N}^*\) be even. We consider two trigonometric series \( F_k(x)= \sum _{n=1}^\infty \frac{\sigma _{k-1}(n)}{n^{k+1}} \sin (2\pi n x)\) and \(G_k(x)= \sum _{n=1}^\infty \frac{\sigma _{k-1}(n)}{n^{k+1}} \cos (2\pi n x),\) where \(\sigma _{k-1}\) is the divisor function. They converge on \(\mathbb {R}\) to continuous functions. In this paper, we examine the differentiability of \(F_k\) and \(G_k\). These functions are related to Eisenstein series, and their (quasi-)modular properties allow us to apply the method proposed by Itatsu in 1981 in the study of the Riemann series. We focus on the case \(k=2\) and we show that the sine series exhibits a different behaviour with respect to differentiability than the cosine series. We prove that the differentiability of \(F_2\) at an irrational x is related to the continued fraction expansion of x. We estimate the modulus of continuity of \(F_2\). We formulate a conjecture concerning differentiability of \(F_k\) and \(G_k\) for any k even.  相似文献   

11.
This paper is concerned with the existence of positive solution to a class of singular fourth order elliptic equation of Kirchhoff type
$$\begin{aligned} \triangle ^2 u-\lambda M(\Vert \nabla u\Vert ^2)\triangle u-\frac{\mu }{\vert x\vert ^4}u=\frac{h(x)}{u^\gamma }+k(x)u^\alpha , \end{aligned}$$
under Navier boundary conditions, \(u=\triangle u=0\). Here \(\varOmega \subset {\mathbf {R}}^N\), \(N\ge 1\) is a bounded \(C^4\)-domain, \(0\in \varOmega \), h(x) and k(x) are positive continuous functions, \(\gamma \in (0,1)\), \(\alpha \in (0,1)\) and \(M:{\mathbf {R}}^+\rightarrow {\mathbf {R}}^+\) is a continuous function. By using Galerkin method and sharp angle lemma, we will show that this problem has a positive solution for \(\lambda > \frac{\mu }{\mu ^*m_0}\) and \(0<\mu <\mu ^*\). Here \(\mu ^*=\Big (\frac{N(N-4)}{4}\Big )^2\) is the best constant in the Hardy inequality. Besides, if \(\mu =0\), \(\lambda >0\) and hk are Lipschitz functions, we show that this problem has a positive smooth solution. If \(h,k\in C^{2,\,\theta _0}(\overline{\varOmega })\) for some \(\theta _0\in (0,1)\), then this problem has a positive classical solution.
  相似文献   

12.
The Walsh transform \(\widehat{Q}\) of a quadratic function \(Q:{\mathbb F}_{p^n}\rightarrow {\mathbb F}_p\) satisfies \(|\widehat{Q}(b)| \in \{0,p^{\frac{n+s}{2}}\}\) for all \(b\in {\mathbb F}_{p^n}\), where \(0\le s\le n-1\) is an integer depending on Q. In this article, we study the following three classes of quadratic functions of wide interest. The class \(\mathcal {C}_1\) is defined for arbitrary n as \(\mathcal {C}_1 = \{Q(x) = \mathrm{Tr_n}(\sum _{i=1}^{\lfloor (n-1)/2\rfloor }a_ix^{2^i+1})\;:\; a_i \in {\mathbb F}_2\}\), and the larger class \(\mathcal {C}_2\) is defined for even n as \(\mathcal {C}_2 = \{Q(x) = \mathrm{Tr_n}(\sum _{i=1}^{(n/2)-1}a_ix^{2^i+1}) + \mathrm{Tr_{n/2}}(a_{n/2}x^{2^{n/2}+1}) \;:\; a_i \in {\mathbb F}_2\}\). For an odd prime p, the subclass \(\mathcal {D}\) of all p-ary quadratic functions is defined as \(\mathcal {D} = \{Q(x) = \mathrm{Tr_n}(\sum _{i=0}^{\lfloor n/2\rfloor }a_ix^{p^i+1})\;:\; a_i \in {\mathbb F}_p\}\). We determine the generating function for the distribution of the parameter s for \(\mathcal {C}_1, \mathcal {C}_2\) and \(\mathcal {D}\). As a consequence we completely describe the distribution of the nonlinearity for the rotation symmetric quadratic Boolean functions, and in the case \(p > 2\), the distribution of the co-dimension for the rotation symmetric quadratic p-ary functions, which have been attracting considerable attention recently. Our results also facilitate obtaining closed formulas for the number of such quadratic functions with prescribed s for small values of s, and hence extend earlier results on this topic. We also present the complete weight distribution of the subcodes of the second order Reed–Muller codes corresponding to \(\mathcal {C}_1\) and \(\mathcal {C}_2\) in terms of a generating function.  相似文献   

13.
Let \(n\ge 2\) and \(g_{\lambda }^{*}\) be the well-known high-dimensional Littlewood–Paley function which was defined and studied by E. M. Stein,
$$\begin{aligned} g_{\lambda }^{*}(f)(x) =\bigg (\iint _{\mathbb {R}^{n+1}_{+}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda } |\nabla P_tf(y,t)|^2 \frac{\mathrm{d}y \mathrm{d}t}{t^{n-1}}\bigg )^{1/2}, \ \quad \lambda > 1, \end{aligned}$$
where \(P_tf(y,t)=p_t*f(y)\), \(p_t(y)=t^{-n}p(y/t)\), and \(p(x) = (1+|x|^2)^{-(n+1)/2}\), \(\nabla =(\frac{\partial }{\partial y_1},\ldots ,\frac{\partial }{\partial y_n},\frac{\partial }{\partial t})\). In this paper, we give a characterization of two-weight norm inequality for \(g_{\lambda }^{*}\)-function. We show that \(\big \Vert g_{\lambda }^{*}(f \sigma ) \big \Vert _{L^2(w)} \lesssim \big \Vert f \big \Vert _{L^2(\sigma )}\) if and only if the two-weight Muckenhoupt \(A_2\) condition holds, and a testing condition holds:
$$\begin{aligned} \sup _{Q : \text {cubes}~\mathrm{in} \ {\mathbb {R}^n}} \frac{1}{\sigma (Q)} \int _{{\mathbb {R}^n}} \iint _{\widehat{Q}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda }|\nabla P_t(\mathbf {1}_Q \sigma )(y,t)|^2 \frac{w \mathrm{d}x \mathrm{d}t}{t^{n-1}} \mathrm{d}y < \infty , \end{aligned}$$
where \(\widehat{Q}\) is the Carleson box over Q and \((w, \sigma )\) is a pair of weights. We actually prove this characterization for \(g_{\lambda }^{*}\)-function associated with more general fractional Poisson kernel \(p^\alpha (x) = (1+|x|^2)^{-{(n+\alpha )}/{2}}\). Moreover, the corresponding results for intrinsic \(g_{\lambda }^*\)-function are also presented.
  相似文献   

14.
In this paper, we consider the general space–time fractional equation of the form \(\sum _{j=1}^m \lambda _j \frac{\partial ^{\nu _j}}{\partial t^{\nu _j}} w(x_1, \ldots , x_n ; t) = -c^2 \left( -\varDelta \right) ^\beta w(x_1, \ldots , x_n ; t)\), for \(\nu _j \in \left( 0,1 \right] \) and \(\beta \in \left( 0,1 \right] \) with initial condition \(w(x_1, \ldots , x_n ; 0)= \prod _{j=1}^n \delta (x_j)\). We show that the solution of the Cauchy problem above coincides with the probability density of the n-dimensional vector process \(\varvec{S}_n^{2\beta } \left( c^2 \mathcal {L}^{\nu _1, \ldots , \nu _m} (t) \right) \), \(t>0\), where \(\varvec{S}_n^{2\beta }\) is an isotropic stable process independent from \(\mathcal {L}^{\nu _1, \ldots , \nu _m}(t)\), which is the inverse of \(\mathcal {H}^{\nu _1, \ldots , \nu _m} (t) = \sum _{j=1}^m \lambda _j^{1/\nu _j} H^{\nu _j} (t)\), \(t>0\), with \(H^{\nu _j}(t)\) independent, positively skewed stable random variables of order \(\nu _j\). The problem considered includes the fractional telegraph equation as a special case as well as the governing equation of stable processes. The composition \(\varvec{S}_n^{2\beta } \left( c^2 \mathcal {L}^{\nu _1, \ldots , \nu _m} (t) \right) \), \(t>0\), supplies a probabilistic representation for the solutions of the fractional equations above and coincides for \(\beta = 1\) with the n-dimensional Brownian motion at the random time \(\mathcal {L}^{\nu _1, \ldots , \nu _m} (t)\), \(t>0\). The iterated process \(\mathfrak {L}^{\nu _1, \ldots , \nu _m}_r (t)\), \(t>0\), inverse to \(\mathfrak {H}^{\nu _1, \ldots , \nu _m}_r (t) =\sum _{j=1}^m \lambda _j^{1/\nu _j} \, _1H^{\nu _j} \left( \, _2H^{\nu _j} \left( \, _3H^{\nu _j} \left( \ldots \, _{r}H^{\nu _j} (t) \ldots \right) \right) \right) \), \(t>0\), permits us to construct the process \(\varvec{S}_n^{2\beta } \left( c^2 \mathfrak {L}^{\nu _1, \ldots , \nu _m}_r (t) \right) \), \(t>0\), the density of which solves a space-fractional equation of the form of the generalized fractional telegraph equation. For \(r \rightarrow \infty \) and \(\beta = 1\), we obtain a probability density, independent from t, which represents the multidimensional generalization of the Gauss–Laplace law and solves the equation \(\sum _{j=1}^m \lambda _j w(x_1, \ldots , x_n) = c^2 \sum _{j=1}^n \frac{\partial ^2}{\partial x_j^2} w(x_1, \ldots , x_n)\). Our analysis represents a general framework of the interplay between fractional differential equations and composition of processes of which the iterated Brownian motion is a very particular case.  相似文献   

15.
Let \(\mathbf {X}=(X_{jk})_{j,k=1}^n\) denote a Hermitian random matrix with entries \(X_{jk}\), which are independent for \(1\le j\le k\le n\). We consider the rate of convergence of the empirical spectral distribution function of the matrix \(\mathbf {X}\) to the semi-circular law assuming that \(\mathbf{E}X_{jk}=0\), \(\mathbf{E}X_{jk}^2=1\) and that
$$\begin{aligned} \sup _{n\ge 1}\sup _{1\le j,k\le n}\mathbf{E}|X_{jk}|^4=:\mu _4<\infty , \end{aligned}$$
and
$$\begin{aligned} \sup _{1\le j,k\le n}|X_{jk}|\le D_0n^{\frac{1}{4}}. \end{aligned}$$
By means of a recursion argument it is shown that the Kolmogorov distance between the expected spectral distribution of the Wigner matrix \(\mathbf {W}=\frac{1}{\sqrt{n}}\mathbf {X}\) and the semicircular law is of order \(O(n^{-1})\).
  相似文献   

16.
Let F be an \(L^2\)-normalized Hecke Maaß cusp form for \(\Gamma _0(N) \subseteq {\mathrm{SL}}_{n}({\mathbb {Z}})\) with Laplace eigenvalue \(\lambda _F\). If \(\Omega \) is a compact subset of \(\Gamma _0(N)\backslash {\mathrm{PGL}}_n/\mathrm{PO}_{n}\), we show the bound \(\Vert F|_{\Omega }\Vert _{\infty } \ll _{ \Omega } N^{\varepsilon } \lambda _F^{n(n-1)/8 - \delta }\) for some constant \(\delta = \delta _n> 0\) depending only on n.  相似文献   

17.
Let \(\Omega \subset \mathbb {R}^\nu \), \(\nu \ge 2\), be a \(C^{1,1}\) domain whose boundary \(\partial \Omega \) is either compact or behaves suitably at infinity. For \(p\in (1,\infty )\) and \(\alpha >0\), define
$$\begin{aligned} \Lambda (\Omega ,p,\alpha ):=\inf _{\begin{array}{c} u\in W^{1,p}(\Omega )\\ u\not \equiv 0 \end{array}}\dfrac{\displaystyle \int _\Omega |\nabla u|^p \mathrm {d} x - \alpha \displaystyle \int _{\partial \Omega } |u|^p\mathrm {d}\sigma }{\displaystyle \int _\Omega |u|^p\mathrm {d} x}, \end{aligned}$$
where \(\mathrm {d}\sigma \) is the surface measure on \(\partial \Omega \). We show the asymptotics
$$\begin{aligned} \Lambda (\Omega ,p,\alpha )=-(p-1)\alpha ^{\frac{p}{p-1}} - (\nu -1)H_\mathrm {max}\, \alpha + o(\alpha ), \quad \alpha \rightarrow +\infty , \end{aligned}$$
where \(H_\mathrm {max}\) is the maximum mean curvature of \(\partial \Omega \). The asymptotic behavior of the associated minimizers is discussed as well. The estimate is then applied to the study of the best constant in a boundary trace theorem for expanding domains, to the norm estimate for extension operators and to related isoperimetric inequalities.
  相似文献   

18.
Let \(\pi _{\varphi }\) (or \(\pi _{\psi }\)) be an automorphic cuspidal representation of \(\text {GL}_{2} (\mathbb {A}_{\mathbb {Q}})\) associated to a primitive Maass cusp form \(\varphi \) (or \(\psi \)), and \(\mathrm{sym}^j \pi _{\varphi }\) be the jth symmetric power lift of \(\pi _{\varphi }\). Let \(a_{\mathrm{sym}^j \pi _{\varphi }}(n)\) denote the nth Dirichlet series coefficient of the principal L-function associated to \(\mathrm{sym}^j \pi _{\varphi }\). In this paper, we study first moments of Dirichlet series coefficients of automorphic representations \(\mathrm{sym}^3 \pi _{\varphi }\) of \(\text {GL}_{4}(\mathbb {A}_{\mathbb {Q}})\), and \(\pi _{\psi }\otimes \mathrm{sym}^2 \pi _{\varphi }\) of \(\text {GL}_{6}(\mathbb {A}_{\mathbb {Q}})\). For \(3 \le j \le 8\), estimates for \(|a_{\mathrm{sym}^j \pi _{\varphi }}(n)|\) on average over a short interval have also been established.  相似文献   

19.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

20.
We study the impedance functions of conservative L-systems with the unbounded main operators. In addition to the generalized Donoghue class \({\mathfrak {M}}_\kappa \) of Herglotz–Nevanlinna functions considered by the authors earlier, we introduce “inverse” generalized Donoghue classes \({\mathfrak {M}}_\kappa ^{-1}\) of functions satisfying a different normalization condition on the generating measure, with a criterion for the impedance function \(V_\Theta (z)\) of an L-system \(\Theta \) to belong to the class \({\mathfrak {M}}_\kappa ^{-1}\) presented. In addition, we establish a connection between “geometrical” properties of two L-systems whose impedance functions belong to the classes \({\mathfrak {M}}_\kappa \) and \({\mathfrak {M}}_\kappa ^{-1}\), respectively. In the second part of the paper we introduce a coupling of two L-system and show that if the impedance functions of two L-systems belong to the generalized Donoghue classes \({\mathfrak {M}}_{\kappa _1}\)(\({\mathfrak {M}}_{\kappa _1}^{-1}\)) and \({\mathfrak {M}}_{\kappa _2}\)(\({\mathfrak {M}}_{\kappa _2}^{-1}\)), then the impedance function of the coupling falls into the class \({\mathfrak {M}}_{\kappa _1\kappa _2}\). Consequently, we obtain that if an L-system whose impedance function belongs to the standard Donoghue class \({\mathfrak {M}}={\mathfrak {M}}_0\) is coupled with any other L-system, the impedance function of the coupling belongs to \({\mathfrak {M}}\) (the absorbtion property). Observing the result of coupling of n L-systems as n goes to infinity, we put forward the concept of a limit coupling which leads to the notion of the system attractor, two models of which (in the position and momentum representations) are presented. All major results are illustrated by various examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号