首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let ${G: \mathbb {C}^{n-1} \rightarrow \mathbb {C}}$ be holomorphic such that G(0)?=?0 and DG(0)?=?0. When f is a convex (resp. starlike) normalized (f(0)?=?0, f??(0)?=?1) univalent mapping of the unit disk ${\mathbb {D}}$ in ${\mathbb {C}}$ , then the extension of f to the Euclidean unit ball ${\mathbb {B}}$ in ${\mathbb {C}^n}$ given by ${\Phi_G(f)(z)=(f(z_1)+G(\sqrt{f^{\prime}(z_1)} \, \hat{z}),\sqrt{f^{\prime}(z_1)}\, \hat{z})}$ , ${\hat{z}=(z_2,\dots,z_n) \in \mathbb {C}^{n-1}}$ , is known to be convex (resp. starlike) if G is a homogeneous polynomial of degree 2 with sufficiently small norm. Conversely, it is known that G cannot have terms of degree greater than 2 in its expansion about 0 in order for ${\Phi_G(f)}$ to be convex (resp. starlike), in general. We examine whether the restriction that f be either convex or starlike of a certain order ${\alpha \in (0,1]}$ allows, in general, for G to contain terms of degree greater than 2 and still have ${\Phi_G(f)}$ maintain the respective geometric property. Related extension results for convex and starlike Bloch mappings are also given.  相似文献   

2.
We consider semi-infinite programming problems ${{\rm SIP}(z)}$ depending on a finite dimensional parameter ${z \in \mathbb{R}^p}$ . Provided that ${\bar{x}}$ is a strongly stable stationary point of ${{\rm SIP}(\bar{z})}$ , there exists a locally unique and continuous stationary point mapping ${z \mapsto x(z)}$ . This defines the local critical value function ${\varphi(z) := f(x(z); z)}$ , where ${x \mapsto f(x; z)}$ denotes the objective function of ${{\rm SIP}(z)}$ for a given parameter vector ${z\in \mathbb{R}^p}$ . We show that ${\varphi}$ is the sum of a convex function and a smooth function. In particular, this excludes the appearance of negative kinks in the graph of ${\varphi}$ .  相似文献   

3.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

4.
Given n, N ≥ 1 we construct a set of points ${\lambda_1,{\ldots},\lambda_{N^n}\in{\mathbb D}^n}$ such that for each rational inner function f on ${{\mathbb D}^n}$ of degree less than N the Pick problem on ${{\mathbb D}^n}$ with data ${\lambda_1,{\ldots},\lambda_{N^n}}$ and ${f(\lambda_1),{\ldots},f(\lambda_{N^n})}$ has a unique solution. In particular, we construct a 1-dimensional inner variety V and show that the points ${\lambda_1,{\ldots},\lambda_{N^n}}$ may be chosen almost arbitrarily in ${V\cap{\mathbb D}^n}$ . Our results state that f is uniquely determined in the Schur class of ${{\mathbb D}^n}$ by its values on ${\lambda_1,{\ldots},\lambda_{N^n}}$ .  相似文献   

5.
We introduce families $ \mathcal{B}_n^S\left( {{z_1},\ldots,{z_n}} \right) $ and $ \mathcal{B}_{{n,\hbar}}^S\left( {{z_1},\ldots,{z_n}} \right) $ of maximal commutative subalgebras, called Bethe subalgebras, of the group algebra $ \mathbb{C}\left[ {\mathfrak{S}n} \right] $ of the symmetric group. Bethe subalgebras are deformations of the Gelfand?Zetlin subalgebra of $ \mathbb{C}\left[ {\mathfrak{S}n} \right] $ . We describe various properties of Bethe subalgebras.  相似文献   

6.
We will investigate the order boundedness of weighted composition operators ${uC_{\varphi}}$ from weighted Bergman spaces ${L_{a}^p(dA_{\alpha})}$ , weighted-type spaces ${H_{\alpha}^{\infty}}$ or Bloch-type spaces ${\mathcal{B}_{\alpha}}$ into the space ${L_{a}^q(dA_{\beta})}$ .  相似文献   

7.
We propose two admissible closures ${\mathbb{A}({\sf PTCA})}$ and ${\mathbb{A}({\sf PHCA})}$ of Ferreira??s system PTCA of polynomial time computable arithmetic and of full bounded arithmetic (or polynomial hierarchy computable arithmetic) PHCA. The main results obtained are: (i) ${\mathbb{A}({\sf PTCA})}$ is conservative over PTCA with respect to ${\forall\exists\Sigma^b_1}$ sentences, and (ii) ${\mathbb{A}({\sf PHCA})}$ is conservative over full bounded arithmetic PHCA for ${\forall\exists\Sigma^b_{\infty}}$ sentences. This yields that (i) the ${\Sigma^b_1}$ definable functions of ${\mathbb{A}({\sf PTCA})}$ are the polytime functions, and (ii) the ${\Sigma^b_{\infty}}$ definable functions of ${\mathbb{A}({\sf PHCA})}$ are the functions in the polynomial time hierarchy.  相似文献   

8.
Let M be a shift invariant subspace in the vector-valued Hardy space ${H_{E}^{2}(\mathbb{D})}$ H E 2 ( D ) . The Beurling–Lax–Halmos theorem says that M can be completely characterized by ${\mathcal{B}(E)}$ B ( E ) -valued inner function ${\Theta}$ Θ . When ${E = H^{2}(\mathbb{D}),\,H_{E}^{2}(\mathbb{D})}$ E = H 2 ( D ) , H E 2 ( D ) is the Hardy space on the bidisk ${H^{2}(\mathbb{D}^2)}$ H 2 ( D 2 ) . Recently, Qin and Yang (Proc Am Math Soc, 2013) determines the operator valued inner function ${\Theta(z)}$ Θ ( z ) for two well-known invariant subspaces in ${H^{2}(\mathbb{D}^{2})}$ H 2 ( D 2 ) . This paper generalizes the ${\Theta(z)}$ Θ ( z ) by Qin and Yang (Proc Am Math Soc, 2013) and deal with the structure of ${M = {\Theta}(z)H^{2}(\mathbb{D}^{2})}$ M = Θ ( z ) H 2 ( D 2 ) when M is an invariant subspace in ${H^{2}(\mathbb{D}^{2})}$ H 2 ( D 2 ) . Unitary equivalence, spectrum of the compression operator and core operator are studied in this paper.  相似文献   

9.
10.
Let ${\mathcal{A}}$ be a collection of n linear hyperplanes in ${\mathbb{k}^\ell}$ , where ${\mathbb{k}}$ is an algebraically closed field. The Orlik-Terao algebra of ${\mathcal{A}}$ is the subalgebra ${{\rm R}(\mathcal{A})}$ of the rational functions generated by reciprocals of linear forms vanishing on hyperplanes of ${\mathcal{A}}$ . It determines an irreducible subvariety ${Y (\mathcal{A})}$ of ${\mathbb{P}^{n-1}}$ . We show that a flat X of ${\mathcal{A}}$ is modular if and only if ${{\rm R}(\mathcal{A})}$ is a split extension of the Orlik-Terao algebra of the subarrangement ${\mathcal{A}_X}$ . This provides another refinement of Stanley’s modular factorization theorem [34] and a new characterization of modularity, similar in spirit to the fibration theorem of [27]. We deduce that if ${\mathcal{A}}$ is supersolvable, then its Orlik-Terao algebra is Koszul. In certain cases, the algebra is also a complete intersection, and we characterize when this happens.  相似文献   

11.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

12.
In this paper we consider a new notion of ${\mathfrak{D}^{\bot}}$ -parallel shape operator for real hypersurfaces in complex two-plane Grassmannians ${G_2(\mathbb{C}^{m+2})}$ and give a non-existence theorem for a Hopf hypersurface in ${G_2(\mathbb{C}^{m+2})}$ with ${\mathfrak{D}^{\bot}}$ -parallel shape operator.  相似文献   

13.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

14.
We prove that for any open Riemann surface ${\mathcal{N}}$ , natural number N ≥ 3, non-constant harmonic map ${h:\mathcal{N} \to \mathbb{R}}$ N?2 and holomorphic 2-form ${\mathfrak{H}}$ on ${\mathcal{N}}$ , there exists a weakly complete harmonic map ${X=(X_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ with Hopf differential ${\mathfrak{H}}$ and ${(X_j)_{j=3,\ldots,{\sc N}}=h.}$ In particular, there exists a complete conformal minimal immersion ${Y=(Y_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ such that ${(Y_j)_{j=3,\ldots,{\sc N}}=h}$ . As some consequences of these results (1) there exist complete full non-decomposable minimal surfaces with arbitrary conformal structure and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes of ${\mathbb{CP}^{{\sc N}-1}}$ in general position. (2) There exist complete non-proper embedded minimal surfaces in ${\mathbb{R}^{\sc N},}$ ${\forall\,{\sc N} >3 .}$   相似文献   

15.
In this paper we construct the matrix subalgebras ${L_{r,s}(\mathbb{R})}$ of the real matrix algebra ${M_{2^{r+s}} (\mathbb{R})}$ when 2 ≤ r + s ≤ 3 and we show that each ${L_{r,s}(\mathbb{R})}$ is isomorphic to the real Clifford algebra ${\mathcal{C} \ell_{r,s}}$ . In particular, we prove that the algebras ${L_{r,s}(\mathbb{R})}$ can be induced from ${L_{0,n}(\mathbb{R})}$ when 2 ≤ rsn ≤ 3 by deforming vector generators of ${L_{0,n}(\mathbb{R})}$ to multiply the specific diagonal matrices. Also, we construct two subalgebras ${T_4(\mathbb{C})}$ and ${T_2(\mathbb{H})}$ of matrix algebras ${M_4(\mathbb{C})}$ and ${M_2(\mathbb{H})}$ , respectively, which are both isomorphic to the Clifford algebra ${\mathcal{C} \ell_{0,3}}$ , and apply them to obtain the properties related to the Clifford group Γ0,3.  相似文献   

16.
Let ?? be an analytic self-map of the unit disk ${\rm \mathbb{D},H(\rm \mathbb{D})}$ the space of analytic functions on ${{\rm \mathbb{D}}}$ and ${g \in H(\rm \mathbb{D})}$ . We define a linear operator as follows $$C_\varphi^gf(z)=\int\limits_0^zf'(\varphi(w))g(w)\, {\rm d}w, $$ on ${ H(\rm \mathbb{D})}$ . In this paper, estimates for the essential norm of the generalized composition operator between Bloch-type spaces and Q K type spaces are obtained.  相似文献   

17.
Let ${\beta(\mathbb{N})}$ denote the Stone–?ech compactification of the set ${\mathbb{N}}$ of natural numbers (with the discrete topology), and let ${\mathbb{N}^\ast}$ denote the remainder ${\beta(\mathbb{N})-\mathbb{N}}$ . We show that, interpreting modal diamond as the closure in a topological space, the modal logic of ${\mathbb{N}^\ast}$ is S4 and that the modal logic of ${\beta(\mathbb{N})}$ is S4.1.2.  相似文献   

18.
We study the Cox ring of the moduli space of stable pointed rational curves, ${\overline{M}_{0,n}}$ , via the closely related permutohedral (or Losev-Manin) spaces ${\overline{L}_{n-2}}$ . Our main result establishes $\left(\begin{array}{ll} n \\ 2 \end{array}\right)$ polynomial subrings of ${{\rm Cox}(\overline{M}_{0,n})}$ , thus giving collections of boundary variables that intersect the ideal of relations of ${{\rm Cox}(\overline{M}_{0,n})}$ trivially. As applications, we give a combinatorial way to partially solve the Riemann-Roch problem for ${\overline{M}_{0,n}}$ , and we show that all relations in degrees of ${{\rm Cox}(\overline{M}_{0,6})}$ arising from certain pull-backs from projective spaces are generated by the Plücker relations.  相似文献   

19.
In this paper, we study noncommutative domains ${\mathbb{D}_f^\varphi(\mathcal{H}) \subset B(\mathcal{H})^n}$ generated by positive regular free holomorphic functions f and certain classes of n-tuples ${\varphi = (\varphi_1, \ldots, \varphi_n)}$ of formal power series in noncommutative indeterminates Z 1, . . . , Z n . Noncommutative Poisson transforms are employed to show that each abstract domain ${\mathbb{D}_f^\varphi}$ has a universal model consisting of multiplication operators (M Z1, . . . , M Z n ) acting on a Hilbert space of formal power series. We provide a Beurling type characterization of all joint invariant subspaces under M Z1, . . . , M Z n and show that all pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ are compressions of ${M_{Z_1} \otimes I, \ldots, M_{Z_n} \otimes I}$ to their coinvariant subspaces. We show that the eigenvectors of ${M_{Z_1}^*, \ldots, M_{Z_n}^*}$ are precisely the noncommutative Poisson kernels ${\Gamma_\lambda}$ associated with the elements ${\lambda}$ of the scalar domain ${\mathbb{D}_{f,<}^\varphi(\mathbb{C}) \subset \mathbb{C}^n}$ . These are used to solve the Nevanlinna-Pick interpolation problem for the noncommutative Hardy algebra ${H^\infty(\mathbb{D}_f^\varphi)}$ . We introduce the characteristic function of an n-tuple ${T=(T_1, \ldots , T_n) \in \mathbb{D}_f^\varphi(\mathcal{H})}$ , present a model for pure n-tuples of operators in the noncommutative domain ${\mathbb{D}_f^\varphi(\mathcal{H})}$ in terms of characteristic functions, and show that the characteristic function is a complete unitary invariant for pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ .  相似文献   

20.
We prove that for each universal algebra ${(A, \mathcal{A})}$ of cardinality ${|A| \geq 2}$ and infinite set X of cardinality ${|X| \geq | \mathcal{A}|}$ , the X-th power ${(A^{X}, \mathcal{A}^{X})}$ of the algebra ${(A, \mathcal{A})}$ contains a free subset ${\mathcal{F} \subset A^{X}}$ of cardinality ${|\mathcal{F}| = 2^{|X|}}$ . This generalizes the classical Fichtenholtz–Kantorovitch–Hausdorff result on the existence of an independent family ${\mathcal{I} \subset \mathcal{P}(X)}$ of cardinality ${|\mathcal{I}| = |\mathcal{P}(X)|}$ in the Boolean algebra ${\mathcal{P}(X)}$ of subsets of an infinite set X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号