首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the multi-point boundary value problem of second-order nonlinear differential equation on a half line, $$\left\{\begin{array}{l@{\quad }l}(\phi_{p}(u'))'(t)+q(t)f(t,u(t),u'(t))=0,&0<t<\infty,\\[6pt]u'(0)=\sum_{i=1}^{m-2}\alpha_{i}u(\xi_{i}),&u'(\infty)=0.\end{array}\right.$$ By using a fixed point theorem due to Avery and Peterson, we show the existence of at least three positive solutions with suitable growth conditions imposed on the nonlinear term.  相似文献   

2.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

3.
In this paper, we study the existence of positive solutions to the boundary value problem for the fractional differential system $$\left\{\begin{array}{lll} D_{0^+}^\beta \phi_p(D_{0^+}^\alpha u) (t) = f_1 (t, u (t), v (t)),\quad t \in (0, 1),\\ D_{0^+}^\beta \phi_p(D_{0^+}^\alpha v) (t) = f_2 (t, u (t), v(t)), \quad t \in (0, 1),\\ D_{0^+}^\alpha u(0)= D_{0^+}^\alpha u(1)=0,\; u (0) = 0, \quad u (1)-\Sigma_{i=1}^{m-2} a_{1i}\;u(\xi_{1i})=\lambda_1,\\ D_{0^+}^\alpha v(0)= D_{0^+}^\alpha v(1)=0,\; v (0) = 0, \quad v (1)-\Sigma_{i=1}^{m-2} a_{2i}\; v(\xi_{2i})=\lambda_2, \end{array}\right. $$ where ${1<\alpha,\beta\leq 2, 2 <\alpha + \beta\leq 4, D_{0^+}^\alpha}$ is the Riemann–Liouville fractional derivative of order α. By using the Leggett–Williams fixed point theorem in a cone, the existence of three positive solutions for nonlinear singular boundary value problems is obtained.  相似文献   

4.
We establish the existence of positive solutions for the second order singular semipositone coupled Dirichlet systems $$\left\{ \begin{aligned} &x{''} +f_1 \bigl(t,y(t)\bigr)+e_1(t)=0, \\ &y{''} +f_2\bigl(t,x(t) \bigr)+e_2(t)=0, \\ &x(0)=x(1)=0,\qquad y(0)=y(1)=0. \end{aligned} \right. $$ The proof relies on Schauder’s fixed point theorem.  相似文献   

5.
In this paper, we prove the existence of solutions of a nonlocal boundary value problem for nonlinear integro-differential equations of fractional order given by $$ \begin{array}{ll} ^cD^qx(t) = f(t,x(t),(\phi x)(t),(\psi x)(t)), \quad 0 < t < 1,\\x(0) = \beta x(\eta), x'(0) =0, x''(0) =0, \ldots, x^{(m-2)}(0) =0, x(1)= \alpha x(\eta), \end{array}$$ where $${q \in (m-1, m], m \in \mathbb{N}, m \ge 2}$, $0< \eta <1$$ , and ${\phi x}$ and ${\psi x}$ are integral operators. The existence results are established by means of the contraction mapping principle and Krasnoselskii’s fixed point theorem. An illustrative example is also presented.  相似文献   

6.
Intervals of the parameters λ and μ are determined for which there exist positive solutions to the system of dynamic equations $$ \begin{array}{lll} && (-1)^nu^{\Delta^{2n}}(t)+\lambda p(t)f(v(\sigma(t)))=0,\quad t\in[a, b], \\ &&(-1)^n v^{\Delta^{2n}}(t)+\mu q(t)g(u(\sigma(t)))=0, \quad t\in[a, b], \end{array} $$ satisfying the Sturm–Liouville boundary conditions $$ \begin{array}{lll} &&\alpha_{i+1} u^{\Delta^{2i}}(a)-\beta_{i+1} u^{\Delta^{2i+1}}(a)=0,\;\gamma_{i+1} u^{\Delta^{2i}}(\sigma(b))+\delta_{i+1} u^{\Delta^{2i+1}}(\sigma(b))=0,\\ &&\alpha_{i+1} v^{\Delta^{2i}}(a)-\beta_{i+1} v^{\Delta^{2i+1}}(a)=0,\; \gamma_{i+1} v^{\Delta^{2i}}(\sigma(b))+\delta_{i+1} v^{\Delta^{2i+1}}(\sigma(b))=0, \end{array} $$ for 0?≤?i?≤?n???1. To this end we apply a Guo–Krasnosel’skii fixed point theorem.  相似文献   

7.
In this paper, we deal with the following nonlinear fractional differential problem in the half-line \({\mathbb{R}^{+}=(0,+ \infty)}\)
$$\left\{\begin{array}{l}D^{\alpha }u(x)+f(x,u(x),D^{p}u(x))=0,\quad x \in \mathbb{R}^{+},\\ u(0)=u^{\prime } \left( 0\right) = \cdots =u^{\left( m-2\right) }(0)=0,\end{array}\right.$$
where \({m\in \mathbb{N}, m \geq 2, m-1 < \alpha \leq m, 0 < p \leq \alpha -1}\), the differential operator is taken in the Riemann–Liouville sense and f is a Borel measurable function in \({\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R} ^{+}}\) satisfying certain conditions. More precisely, we show the existence of multiple unbounded positive solutions, by means of Schäuder fixed point theorem. Some examples illustrating our main result are also given.
  相似文献   

8.
In this paper, we study the existence of positive solution to boundary value problem for fractional differential system $$\left\{\begin{array}{ll}D_{0^+}^\alpha u (t) + a_1 (t) f_1 (t, u (t), v (t)) = 0,\;\;\;\;\;\;\;\quad t \in (0, 1),\\D_{0^+}^\alpha v (t) + a_2 (t) f_2 (t, u (t), v (t)) = 0,\;\;\;\;\;\;\;\quad t \in (0, 1), \;\; 2 < \alpha < 3,\\u (0)= u' (0) = 0, \;\;\;\; u' (1) - \mu_1 u' (\eta_1) = 0,\\v (0)= v' (0) = 0, \;\;\;\; v' (1) - \mu_2 v' (\eta_2) = 0,\end{array}\right.$$ where ${D_{0^+}^\alpha}$ is the Riemann-Liouville fractional derivative of order ??. By using the Leggett-Williams fixed point theorem in a cone, the existence of three positive solutions for nonlinear singular boundary value problems is obtained.  相似文献   

9.
利用Krasnoselskii不动点定理,结合Leray-Schauder度,研究下列三阶微分方程组边值问题{ui″′(t)=fi(t,u1(t),u2(t),u3(t)), t∈[0,1],/ui′(0)=ui″(0)=ui(1)=0, i=1,2,3. 在某些条件下,常号解的存在性和多解性.  相似文献   

10.
In this paper, firstly, we investigate a class of singular eigenvalue problems with the perturbed Hardy–Sobolev operator, and obtain some properties of the eigenvalues and the eigenfunctions. (i.e. existence, simplicity, isolation and comparison results). Secondly, applying these properties of eigenvalue problem, and the linking theorem for two symmetric cones in Banach space, we discuss the following singular elliptic problem $$\left\{\begin{array}{ll}-\Delta_{p}u-a(x)\frac{|u|^{p-2}u}{|x|^{p}}= \lambda \eta(x)|u|^{p-2}u+ f(x,u) \quad x \in \Omega, \\ u =0 \quad\quad\quad\quad\quad\quad\quad x\in\partial \Omega, \end{array} \right.$$ where ${a(x)=(\frac{n-p}{p})^{p}q(x),}$ if 1 < p < n, ${a(x)=(\frac{n-1}{n})^{n} \frac{q(x)}{({\rm log}\frac{R}{|x|})^{n}},}$ if p = n, and prove the existence of a nontrivial weak solution for any ${\lambda \in \mathbb{R}.}$   相似文献   

11.
In this paper we deal with local estimates for parabolic problems in ${\mathbb{R}^N}$ with absorbing first order terms, whose model is $$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$ where ${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$ and ${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$ .  相似文献   

12.
We consider the ( p , n m p ) right focal boundary value problem: $${\matrix{{(- 1)^{n - p} u^{(n)} \! = \lambda \;f(t, u), } \hfill & \ {{\rm for }\ 0 \lt t \lt 1, } \hfill \cr \quad \quad \,{u^{(i)} (0) = 0, } \hfill & {0 \le i \le p - 1, } \hfill \cr \quad \quad \,{u^{(i)} (1) = 0, } \hfill & {p \le i \le n - 1, } \hfill \cr}} $$ where 1 h p h n m 1 is fixed and u > 0. Using a fixed point theorem for operators on a cone, we develop criteria for the existence of positive solutions of the boundary value problem for u on a suitable interval.  相似文献   

13.
In this paper, based on the one-signed Green''s function and the compact results on the infinite interval, we obtain the existence and multiplicity of positive solutions for the boundary value problems \begin{align*} \left\{\begin{array}{ll} \Delta^2x(n-1)-p(n)\Delta x(n-1)-q(n)x(n-1)+f(n,x(n))=0, \ n\in\mathbb{N}, \\[0ex] \alpha x(0)-\beta\Delta x(0)=0, \quad \ \ \lim\limits_{n\rightarrow\infty}x(n)=0 \end{array} \right. \end{align*} by the fixed point theorem in cones. The main results extend some results in the previous literature.  相似文献   

14.
应用锥理论和不动点指数方法,在与相应线性算子的第一特征值相关的条件下,得到了下述非线性二阶常微分方程m-点边值问题{u"(t) a(t)u' b(t)u h(t)f(u(t))=0,0<t<1,u'(0)=0,u(1)=m-2∑i=1αiu(ξi).的正解,改进了相关文献中的结论.  相似文献   

15.
This paper investigates the existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem with fractional q-derivative
$$\begin{aligned}&D_{q}^{\alpha }u(t)+f(t,u(t))=0, \quad {0<t<1, ~3<\alpha \le 4,} \\&u(0)= D_{q}u(0)=D_{q}^{2}u(0)=0, \quad D_{q}^{2}u(1)=\beta D_{q}^{2}u(\eta ), \end{aligned}$$
where \(D_{q}^{\alpha }\) denotes the Riemann–Liouville q-derivative of order \(\alpha \), \(0<\eta <1\) and \(1-\beta \eta ^{\alpha -3}>0\). Our analysis relies a fixed point theorem in partially ordered sets. An example to illustrate our results is given.
  相似文献   

16.
This paper deals with the existence of weak solutions to a class of degenerate and singular elliptic systems in ℝ N , N 2 of the form
$\left\{{l@{\quad}l}-\mathop{\mathrm{div}}(h_{1}(x)\nabla u)+a(x)u=f(x,u,v)&\mbox{in}\mathbb{R}^{N},\\-\mathop{\mathrm{div}}(h_{2}(x)\nabla v)+b(x)v=g(x,u,v)&\mbox{in}\mathbb{R}^{N},\right.$\left\{\begin{array}{l@{\quad}l}-\mathop{\mathrm{div}}(h_{1}(x)\nabla u)+a(x)u=f(x,u,v)&\mbox{in}\mathbb{R}^{N},\\-\mathop{\mathrm{div}}(h_{2}(x)\nabla v)+b(x)v=g(x,u,v)&\mbox{in}\mathbb{R}^{N},\end{array}\right.  相似文献   

17.
We mainly study the existence of positive solutions for the following third order singular super-linear multi-point boundary value problem $$ \left \{ \begin{array}{l} x^{(3)}(t)+ f(t, x(t), x'(t))=0,\quad0 where \(0\leq\alpha_{i}\leq\sum_{i=1}^{m_{1}}\alpha_{i}<1\) , i=1,2,…,m 1, \(0<\xi_{1}< \xi_{2}< \cdots<\xi_{m_{1}}<1\) , \(0\leq\beta_{j}\leq\sum_{i=1}^{m_{2}}\beta_{i}<1\) , j=1,2,…,m 2, \(0<\eta_{1}< \eta_{2}< \cdots<\eta_{m_{2}}<1\) . And we obtain some necessary and sufficient conditions for the existence of C 1[0,1] and C 2[0,1] positive solutions by means of the fixed point theorems on a special cone. Our nonlinearity f(t,x,y) may be singular at t=0 and t=1.  相似文献   

18.
In this paper, we study the following second-order Emden-Fowler neutral delay differential equation $$(r(t)z'(t) )'+q(t)|x(\sigma(t))|^{\gamma-1}x(\sigma(t))=0,$$ where $z(t)=x(t)+p(t)x(t-\tau),\ \int_{t_{0}}^{\infty}\frac{1}{r(t)}\mathrm{d}t<\infty$ . We establish some new oscillation results which handle some cases not covered by known criteria.  相似文献   

19.
In this paper, the authors obtain the existence of infinitely many classical solutions to the boundary value system with Sturm–Liouville boundary conditions $$\left\{\begin{array}{ll}-(\phi_{p_i}(u_{i}^\prime))^\prime = \lambda F_{u_{i}}(x,u_{1},\ldots,u_{n})h_{i}(u^\prime_i)\quad {\rm in} \, (a,b), \\ \alpha_iu_{i}(a)-\beta_iu^ \prime_{i}(a)=0, \quad \gamma_iu_{i}(b)+\sigma_iu^\prime_{i}(b)=0, \end{array}\quad{i = 1, \ldots , n.} \right.$$ Critical point theory and Ricceri’s variational principle are used in the proofs.  相似文献   

20.
In this paper, we investigate the existence results for fractional differential equations of the form
$$\begin{aligned} {\left\{ \begin{array}{ll} D_{c}^{q}x(t)=f(t,x(t)) \quad t\in [0, T)\left( 0<T\le \infty \right) , \quad q \in (1,2),\\ x(0)=a_{0},\quad x^{'}(0)=a_{1}, \end{array}\right. } \end{aligned}$$
(0.1)
and
$$\begin{aligned} {\left\{ \begin{array}{ll} D_{c}^{q}x(t)=f(t,x(t)) \quad t\in [0, T), \quad q \in (0,1),\\ x(0)=a_{0}, \end{array}\right. } \end{aligned}$$
(0.2)
where \(D_{c}^{q}\) is the Caputo fractional derivative. We prove the above equations have solutions in C[0, T). Particularly, we present the existence and uniqueness results for the above equations on \([0,+\infty )\).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号