首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag–Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.  相似文献   

2.
Considering a fractional derivative model the unsteady flow of an Oldroyd-B fluid between two infinite coaxial circular cylinders is studied by using finite Hankel and Laplace transforms. The motion is produced by the inner cylinder which is subject to a time dependent longitudinal shear stress at time t = 0+. The solution obtained under series form in terms of generalized G and R functions, satisfy all imposed initial and boundary conditions. The corresponding solutions for ordinary Oldroyd-B, generalized and ordinary Maxwell, and Newtonian fluids are obtained as limiting cases of our general solutions. The influence of pertinent parameters on the fluid motion as well as a comparison between models is illustrated graphically.  相似文献   

3.
《Quaestiones Mathematicae》2013,36(4):429-441
Abstract

The velocity field and the adequate shear stress corresponding to the unsteady flow of a generalized Oldroyd-B fluid in an infinite circular cylinder are determined by means of Hankel and Laplace transforms. The solutions that have been obtained, written in terms of the generalized G-functions, satisfy all imposed initial and boundary conditions. The similar solutions for generalized Maxwell fluids as well as those for ordinary fluids are obtained as limiting cases of our general solutions.  相似文献   

4.
The aim of this paper is to present the analytical solutions corresponding to two types of unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative between two parallel plates. The fractional calculus approach is used in solving the problems. The velocity distributions are determined by means of discrete Laplace transform and finite Fourier sine transform. The obtained results indicate that some well known solutions for the generalized second grade fluid, the generalized Maxwell fluid as well as the ordinary Oldroyd-B fluid appear as the limiting cases of the presented results.  相似文献   

5.
The velocity field and the shear stress corresponding to the motion of a generalized Oldroyd-B fluid due to an infinite circular cylinder subject to a longitudinal time-dependent shear stress are established by means of the Laplace and finite Hankel transforms. The exact solutions, written under series form, can be easily specialized to give the similar solutions for generalized Maxwell and generalized second grade fluids as well as for ordinary Oldroyd-B, Maxwell, second grade and Newtonian fluids performing the same motion. Finally, some characteristics of the motion as well as the influence of the material parameters on the behavior of the fluid are shown by graphical illustrations.  相似文献   

6.
The velocity field corresponding to the Rayleigh–Stokes problem for an edge, in an incompressible generalized Oldroyd-B fluid has been established by means of the double Fourier sine and Laplace transforms. The fractional calculus approach is used in the constitutive relationship of the fluid model. The obtained solution, written in terms of the generalized G-functions, is presented as a sum of the Newtonian solution and the corresponding non-Newtonian contribution. The solution for generalized Maxwell fluids, as well as those for ordinary Maxwell and Oldroyd-B fluids, performing the same motion, is obtained as a limiting case of the present solution. This solution can be also specialized to give the similar solution for generalized second grade fluids. However, for simplicity, a new and simpler exact solution is established for these fluids. For β → 1, this last solution reduces to a previous solution obtained by a different technique.  相似文献   

7.
This paper deals with the unsteady helical flows of a generalized Oldroyd-B fluid between two infinite coaxial cylinders and within an infinite cylinder. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions are obtained with the help of integral transforms (Laplace transform, Weber transform and finite Hankel transform). The corresponding solutions for generalized second grade and Maxwell fluids as well as those for the Newtonian and ordinary Oldroyd-B fluids are also given in limiting cases. Finally, the influence of model parameters on the velocity field is also analyzed by graphical illustrations.  相似文献   

8.
The velocity field corresponding to the Rayleigh–Stokes problem for an edge, in an incompressible generalized Oldroyd-B fluid has been established by means of the double Fourier sine and Laplace transforms. The fractional calculus approach is used in the constitutive relationship of the fluid model. The obtained solution, written in terms of the generalized G-functions, is presented as a sum of the Newtonian solution and the corresponding non-Newtonian contribution. The solution for generalized Maxwell fluids, as well as those for ordinary Maxwell and Oldroyd-B fluids, performing the same motion, is obtained as a limiting case of the present solution. This solution can be also specialized to give the similar solution for generalized second grade fluids. However, for simplicity, a new and simpler exact solution is established for these fluids. For β → 1, this last solution reduces to a previous solution obtained by a different technique.   相似文献   

9.
This paper presents an analysis for helical flows of a heated generalized Oldroyd-B fluid subject to a time-dependent shear stress in porous medium, where the motion is due to the longitudinal time-dependent shear stress and the oscillating velocity in boundary. The exact solutions are established by using the sequential fractional derivatives Laplace transform coupled with finite Hankel transforms in terms of generalized G function. Moreover, the effects of various parameters (relaxation time, fractional parameter, permeability and porosity) on the flow and heat transfer are analyzed in detail by graphical illustrations.  相似文献   

10.
This paper deals with the 3D flow of a generalized Oldroyd-B fluid due to a constant pressure gradient between two side walls perpendicular to a plate. The fractional calculus approach is used to establish the constitutive relationship of the non-Newtonian fluid model. Exact analytic solutions for the velocity and stress fields, in terms of the Fox H-function, are established by means of the finite Fourier sine transform and the Laplace transform. Solutions similar to those for ordinary Oldroyd-B fluid as well as those for Maxwell and second-grade fluids are also obtained as limiting cases of the results presented. Furthermore, 3D figures for velocity and shear stress fields are presented for the first time for certain values of the parameters, and the associated transport characteristics are analyzed and discussed.  相似文献   

11.
The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a generalized Maxwell fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and after some time both cylinders suddenly begin to oscillate around their common axis with different angular frequencies of their velocities. The solutions that have been obtained are presented under integral and series forms in terms of generalized G and R functions. Moreover, these solutions satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary Maxwell fluid are also obtained as limiting cases of our general solutions. At the end, flows corresponding to the ordinary Maxwell and generalized Maxwell fluids are shown and compared graphically by plotting velocity profiles at different values of time and some important results are remarked.  相似文献   

12.
Analytical expressions for the velocity fields corresponding to the motions of an Oldroyd-B fluid due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient and pressure jumps are determined by means of the Fourier sine transform. The corresponding solutions for a Maxwell and a Newtonian fluid appear as limiting cases of the solutions established here. Relevant physical properties of the flows and their dependence on material and geometry parameters are discussed.  相似文献   

13.
14.
Analytical expressions for the velocity fields corresponding to the motions of an Oldroyd-B fluid due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient and pressure jumps are determined by means of the Fourier sine transform. The corresponding solutions for a Maxwell and a Newtonian fluid appear as limiting cases of the solutions established here. Relevant physical properties of the flows and their dependence on material and geometry parameters are discussed. (Received: August 16, 2005; revised: December 19, 2005)  相似文献   

15.
The velocity field and the associated shear stresses corresponding to the unsteady flow of generalized Maxwell fluid on oscillating rectangular duct have been determined by means of double finite Fourier sine and Laplace transforms. These solutions are also presented as a sum of the steady-state and transient solutions. The solutions corresponding to Maxwell fluids, performing the same motion, appear as limiting cases of the solutions obtained here. In the absence of w, namely the frequency, and making α → 1, all solutions that have been determined reduce to those corresponding to the Rayleigh Stokes problem on oscillating rectangular duct for Maxwell fluids. Finally, some graphical representations confirm the above assertions.  相似文献   

16.
The unsteady helical flow of an Oldroyd-B fluid, in an infinite circular cylinder, is studied by using finite Hankel transforms. The motion is produced by the cylinder that, at time t = 0+, is subject to torsional and longitudinal time-dependent shear stresses. The solutions that have been obtained, presented under series form, satisfy all imposed initial and boundary conditions. The corresponding solutions for Maxwell, second grade and Newtonian fluids are obtained as limiting cases of general solutions. Finally, the influence of the pertinent parameters on the fluid motion is underlined by graphical illustrations.  相似文献   

17.
This paper presents the new exact analytical solutions for magnetohydrodynamic (MHD) flows of an Oldroyd-B fluid. The explicit expressions for the velocity field and the associated tangential stress are established by using the Laplace transform method. Three characteristic examples: (i) flow due to impulsive motion of plate, (ii) flow due to uniformly accelerated plate, and (iii) flow due to non-uniformly accelerated plate are considered. The solutions for the hydrodynamic flows are special cases of the presented solutions. Moreover, the similar solutions corresponding to Maxwell and Newtonian fluids in the presence as well as absence of a magnetic field appear as the limiting cases of our solutions. The influences of the exerted magnetic field on the flow are also graphically presented and discussed. In particular, graphical results for the Oldroyd-B fluid are compared with those of a Newtonian fluid.  相似文献   

18.
The velocity fields corresponding to an incompressible fluid of Oldroyd-B type subject to a linear flow within an infinite edge are determined for all values of the relaxation and retardation times. The well known solution for a Navier–Stokes fluid, as well as those corresponding to a Maxwell fluid and a second grade one, appears as a limiting case of our solutions. To cite this article: C. Fetecau, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 979–984.  相似文献   

19.
Exact solutions corresponding to the unsteady helical flow of an Oldroyd-B fluid due to an infinite circular cylinder subject to torsional and longitudinal time-dependent shear stresses are established using Hankel transforms. These solutions, presented under series form in terms of Bessel functions J 0(·), J 1(·) and J 2(·), can be easily specialized to give the similar solutions for Maxwell, Second grade and Newtonian fluids performing the same motion. Some characteristics of the motion, as well as the influence of pertinent parameters on the velocity profiles, are underlined by graphical illustrations.  相似文献   

20.
This article considers the oscillatory flows of a generalized Burgers’ fluid on an infinite insulating plate when the fluid is permeated by a transverse magnetic field. The effects of Hall current are taken into account. Modified Darcy’s law for a generalized Burgers’ fluid has been used to discuss the flows in a porous medium. The governing time dependent equations in a rotating frame are first developed and then solved for the two problems. The influence of various emerging parameters is discussed through various graphs. The solutions for the Newtonian, second grade, Maxwell, Oldroyd-B and Burgers’ fluids can be obtained from our solutions as the limiting cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号