首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analogues of the ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(methylene)bis((pyridin-2-ylmethyl)azanediyl)diethanol (CH(3)H(3)L1) are described. Complexation of these analogues, 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (CH(3)HL2), 4-bromo-2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (BrHL2), 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (NO(2)HL2) and 4-methyl-2,6-bis(((2-phenoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (CH(3)HL3) with zinc(II) acetate afforded [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(BrL2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(CH(3)L3)(CH(3)COO)(2)](PF(6)), in addition to [Zn(4)(CH(3)L2)(2)(NO(2)C(6)H(5)OPO(3))(2)(H(2)O)(2)](PF(6))(2) and [Zn(4)(BrL2)(2)(PO(3)F)(2)(H(2)O)(2)](PF(6))(2). The complexes were characterized using (1)H and (13)C NMR spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. The complexes contain either a coordinated methyl- (L2 ligands) or phenyl- (L3 ligand) ether, replacing the potentially nucleophilic coordinated alcohol in the previously reported complex [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)). Functional studies of the zinc complexes with the substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) showed them to be competent catalysts with, for example, [Zn(2)(CH(3)L2)](+), k(cat) = 5.70 ± 0.04 × 10(-3) s(-1) (K(m) = 20.8 ± 5.0 mM) and [Zn(2)(CH(3)L3)](+), k(cat) = 3.60 ± 0.04 × 10(-3) s(-1) (K(m) = 18.9 ± 3.5 mM). Catalytically relevant pK(a)s of 6.7 and 7.7 were observed for the zinc(II) complexes of CH(3)L2(-) and CH(3)L3(-), respectively. Electron donating para-substituents enhance the rate of hydrolysis of BDNPP such that k(cat)p-CH(3) > p-Br > p-NO(2). Use of a solvent mixture containing H(2)O(18)/H(2)O(16) in the reaction with BDNPP showed that for [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), as well as [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)), the (18)O label was incorporated in the product of the hydrolysis suggesting that the nucleophile involved in the hydrolysis reaction was a Zn-OH moiety. The results are discussed with respect to the potential nucleophilic species (coordinated deprotonated alcohol versus coordinated hydroxide).  相似文献   

2.
Aqueous medium reactions of transition metal salts with HL under hydrothermal conditions at 90°C led to two new coordination polymers, [M(L)2(H2O)2]?·?H2O [M?=?Co(1) and Mn(2); HL?=?3,5-bis(pyridin-4-ylmethyl)aminobenzoic acid]. HL contains both flexible N-donor groups [(pyridin-4-ylmethyl)amino] and carboxylate. The flexibility of (pyridin-4-ylmethyl)amino endows HL the ability to adopt varied conformations and coordination modes. Due to the presence of nitrogen and oxygen of HL and water in the reaction system, hydrogen-bonding interactions are available to assemble donor and acceptor building blocks. The two complexes are structurally similar to L? doubly interconnecting M(II) to form 1-D chains. The extension of the 1-D chain through hydrogen-bonding forms fascinating 3-D supramolecular frameworks. FT-IR spectroscopy and thermal stability have been studied. The two compounds represent the first complexes containing 3,5-bis(pyridin-4-ylmethyl)amino benzoate.  相似文献   

3.
A series of iron(III) complexes 1-4 of the tripodal tetradentate ligands N,N-bis(pyrid-2-ylmethyl)-N-(2-hydroxyethyl)amine H(L1), N,N-bis(pyrid-2-ylmethyl)-N-(2-hydroxy- propyl)amine H(L2), N,N-bis(pyrid-2-ylmethyl)-N-ethoxyethanolamine H(L3), and N-((pyrid-2-ylmethyl)(1-methylimidazol-2-ylmethyl))-N-(2-hydroxyethyl)amine H(L4), have been isolated, characterized and studied as functional models for intradiol-cleaving catechol dioxygenases. In the X-ray crystal structure of [Fe(L1)Cl(2)] 1, the tertiary amine nitrogen and two pyridine nitrogen atoms of H(L1) are coordinated meridionally to iron(III) and the deprotonated ethanolate oxygen is coordinated axially. In contrast, [Fe(HL3)Cl(3)] 3 contains the tertiary amine nitrogen and two pyridine nitrogen atoms coordinated facially to iron(III) with the ligand ethoxyethanol moiety remaining uncoordinated. The X-ray structure of the bis(μ-alkoxo) dimer [{Fe(L5)Cl}(2)](ClO(4))(2)5, where HL is the tetradentate N(3)O donor ligand N,N-bis(1-methylimidazol-2-ylmethyl)-N-(2-hydroxyethyl)amine H(L5), contains the ethanolate oxygen donors coordinated to iron(III). Interestingly, the [Fe(HL)(DBC)](+) and [Fe(HL3)(HDBC)X] adducts, generated by adding ~1 equivalent of piperidine to solutions containing equimolar quantities of iron(III) complexes 1-5 and H(2)DBC (3,5-di-tert-butylcatechol), display two DBC(2-)→ iron(III) LMCT bands (λ(max): 1, 577, 905; 2, 575,915; 3, 586, 920; 4, 563, 870; 5, 557, 856 nm; Δλ(max), 299-340 nm); however, the bands are blue-shifted (λ(max): 1, 443, 700; 2, 425, 702; 3, 424, 684; 4, 431, 687; 5, 434, 685 nm; Δλ(max), 251-277 nm) on adding 1 more equivalent of piperidine to form the adducts [Fe(L)(DBC)] and [Fe(HL3)(HDBC)X]. Electronic spectral and pH-metric titration studies in methanol disclose that the ligand in [Fe(HL)(DBC)](+) is protonated. The [Fe(L)(DBC)] adducts of iron(III) complexes of bis(pyridyl)-based ligands (1,2) afford higher amounts of intradiol-cleavage products, whereas those of mono/bis(imidazole)-based ligands (4,5) yield mainly the auto-oxidation product benzoquinone. It is remarkable that the adducts [Fe(HL)(DBC)](+)/[Fe(HL3)(DBC)X] exhibit higher rates of oxygenation affording larger amounts of intradiol-cleavage products and lower amounts of benzoquinone.  相似文献   

4.
The reactions of [Mn3O(O2CCCl3)6(H2O)3] with 1-phenyl-3-(2-pyridyl)propane-1,3-dione (HL(1)) and 1-(2-pyridly)-3-(p-tolyl)propane-1,3-dione (HL(2)) in CH2Cl2 afford the mixed-valence Mn(II)2Mn(III)2 tetranuclear complexes [Mn4O(O2CCCl3)6(L(1))2] (1) and [Mn4O(O2CCCl3)6L2(2)] (2), respectively. Similar reactions employing [Mn3O(O2CPh)6(H2O)(py)2] with HL(1) and HL(2) give the Mn(II)3Mn(III)3 hexanuclear complexes [Mn6O2(O2CPh)8(L(1))3] (3) and [Mn6O2(O2CPh)8L3(2)] (4), respectively. Complexes 1.2CH2Cl2, 2.2CH2Cl2.H2O, 3.1.5CH2Cl2.Et2O.H2O, and 4.2CH2Cl2 crystallize in the triclinic space group P1, monoclinic space group P2(1)/c, monoclinic space group P2 1/ n, and monoclinic space group P2(1)/n, respectively. Complexes 1 and 2 consist of a trapped-valence tetranuclear core of [Mn(II)2Mn(III)2(mu4-O)](8+), and complexes 3 and 4 represent a new structural type, possessing a [Mn(II)3Mn(III)3(mu4-O)2](11+) core. The magnetic data indicate that complexes 3 and 4 have a ground-state spin value of S = 7/2 with significant magnetoanisotropy as gauged by the D values of -0.51 cm (-1) and -0.46 cm (-1), respectively, and frequency-dependent out-of-phase signals in alternating current magnetic susceptibility studies indicate their superparamagnetic behavior. In contrast, complexes 1 and 2 are low-spin molecules with an S = 1 ground state. Single-molecule magnetism behavior confirmed for 3 the presence of sweep-rate and temperature-dependent hysteresis loops in single-crystal M versus H studies at temperatures down to 40 mK.  相似文献   

5.
A mixed-valence complex, [Fe(III)Fe(II)L1(μ-OAc)(2)]BF(4)·H(2)O, where the ligand H(2)L1 = 2-{[[3-[((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The Fe(III)Fe(II) and Fe(III)(2) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1)·S(2), where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The Fe(III)Fe(II) complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe(III)(2) complex showed an EPR spectrum due to population of the S(tot) = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the Fe(III)Fe(II) complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 × 10(-3) s(-1); K(m) = 4.63 × 10(-3) mol L(-1)) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe(III). It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(μ-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.  相似文献   

6.
Thymidine and uridine were modified at the C2' and C5' ribose positions to form amine analogues of the nucleosides (1 and 4). Direct amination with NaBH(OAc)3 in DCE with the appropriate aldehydes yielded 1-{5-[(bis(pyridin-2-ylmethyl)amino)methyl]-4-hydroxytetrahydrofuran-2-yl}-5-methyl-1H-pyrimidine-2,4-dione (L1), 1-{5-[(bis(quinolin-2-ylmethyl)amino)methyl]-4-hydroxytetrahydrofuran-2-yl}-5-methyl-1H-pyrimidine-2,4-dione (L2), and 1-[3-(bis(pyridin-2-ylmethyl)amino)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-1H-pyrimidine-2,4-dione (L5), while standard coupling procedures of 1 and 4 with 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid (2) and 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid (3) in the presence of HOBT-EDCI in DMF provided a second novel series of bifunctional chelators: 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid [(3-hydroxy-5-(5-methyl-4-oxo-3,4-dihydro-2H-pyrimidin-1-yl)tetrahydrofuran-2-yl)methyl] amide (L3), 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid [(3-hydroxy-5-(5-methyl-4-oxo-3,4-dihydro-2H-pyrimidin-1-yl)tetrahydrofuran-2-yl)methyl] amide (L4), 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid [2-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-3-yl] amide (L6), and 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid [2-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-3-yl] amide (L7). The rhenium tricarbonyl complexes of L1-L4, L6, and L7, [Re(CO)3(LX)]Br (X=1-4, 6, 7: compounds 5-10, respectively), have been prepared by reacting the appropriate ligand with [NEt4][Re(CO)3Br3] in methanol. The ligands and their rhenium complexes were obtained in good yields and characterized by common spectroscopic techniques including 1D and 2D NMR, HRMS, IR, cyclic voltammetry, UV, and luminescence spectroscopy and X-ray crystallography. The crystal structure of complex 6.0.5NaPF6 displays a facial geometry of the carbonyl ligands. The nitrogen donors of the tridentate ligand complete the distorted octahedral spheres of the complex. Crystal data: monoclinic, C2, a = 24.618(3) A, b = 11.4787(11) A, c = 15.5902(15) A, beta = 112.422(4) degrees , Z = 4, D(calc) = 1.562 g/cm3.  相似文献   

7.
Two benzoxazoles derivative ligands were synthesized from the condensation of 3,5-di-tert-butyl-o-benzoquinone (DTBBQ) with ethanolamine or 1,3-diamino-2-hydroxypropane in methanol. Condensation of DTBBQ with ethanolamine gives the expected 5,7-di-tert-butyl-2-methylenhydroxylbenzoxazole (HL1) while with 1,3-diamino-2-hydroxypropane it gives (2-hydroxyethyl-2-{2,4-bis(1,1-dimethylethyl)-1-phenol-6 amino}-2{5,7-di-tert-butyl-benzoxazole}) (H(2)L2) with only one benzoxazole ring instead of the symmetric bis-benzoxazole derivative. The structure of HL1 and H(2)L2 were confirmed by NMR-spectroscopy and X-ray diffraction on a single crystal for HL1. The reaction of HL1 with CuCl(2) gives a mononuclear [Cu(II)(HL1)(2)Cl(2)] (1) complex for which the crystal structure shows that HL1 is preserved. In contrast, upon reaction with nickel(II), cobalt(II), and manganese(II) H(2)L2 is further oxidized and transformed in new ligands HL3 in mononuclear complexes [M(II)(L3)(2)] (M = Ni(II) (2); M = Co(II) (3)) and H(2)L4 in tetranuclear complex [Mn(II)(4)(HL4)(4)Cl(4)] (4) as found from the crystal structures of complexes 2-4. Electrochemical studies for complexes 2 and 3 evidence complicated redox properties. [Mn(II)(4)(HL4)(4)Cl(4)] (4) has a cubane-like structure with a "4 + 2" fashion The magnetic susceptibility of 4 is well fitted considering one Mn---Mn interaction J(a)(Mn(II)-Mn(II)) = -0.50(1) cm(-1) with g = 2.00(7).  相似文献   

8.
The synthetic route toward new unsymmetric compartmental "end-off" Schiff-base ligands in a straightforward two-step reaction of 2,6-diformyl-4-methylphenol and two different amine components is presented. To demonstrate the versatility of this method, we have synthesized two different single-Schiff-base proligands, Hbpahmb and Hphmb, utilizing (2-aminoethyl)bis(2-pyridylmethyl)amine and (2-aminomethyl)pyridine, respectively. Subsequent reaction with thiosemicarbazide as the second amine component leads to the novel unsymmetric double-Schiff-base ligands {1-[3-[2-[bis(pyridin-2-ylmethyl)amino]ethyliminomethyl]-2-hydroxy-5-methylphenyl]methylidene}hydrazine carbothioamide (H2bpamptsc) and {1-[3-(pyridin-2-ylmethyliminomethyl)-2-hydroxy-5-methylphenyl]methylidene}hydrazine carbothioamide (H2pmptsc). Both ligands provide two distinctly different coordination pockets: a rigid tridentate N,O,S donor set of the hydrazide compartment versus a rather flexible pentadentate (H2bpamptsc) or tridentate (H2pmptsc) nitrogen-rich chelating side arm. The reaction of the ligand H2bpamptsc with zinc(II) acetate and copper(II) perchlorate yields the heterobinuclear Cu-Zn complex [CuZn(bpamptsc)(mu2,eta1-OAc)(MeCN)](ClO4) (1).  相似文献   

9.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

10.
Two iron(III)-containing amphiphiles 1 and 2 have been synthesized with the [NN'O] ligands HL(tBu-ODA) (2-((octadecyl(pyridin-2-ylmethyl)amino)methyl)-4,6-di-tert-butylphenol) and HL(I-ODA) (2-((octadecyl(pyridin-2-ylmethyl)amino)methyl)-4,6-diiodophenol), respectively. Compound 1 is monometallic, whereas EXAFS data suggest that 2 is a mixture of mono- and bimetallic species. The archetypical [Fe(III)(L(NN'O))(2)](+) complexes 3-9 have been isolated and characterized in order to understand the geometric, electronic, and redox properties of the amphiphiles. Preference for a monometallic or bimetallic nuclearity is dependent on (i) the nature of the solvent used for synthesis and (ii) the type of the substituent in the phenol moiety. In methanol, the tert-butyl-, methoxy-, and chloro-substituted 3, 4, and 5 are monometallic species, whereas the bromo- and iodo-substituted 6 and 7 form bimetallic complexes taking advantage of stabilizing methoxo bridges generated by solvent deprotonation. In dichloromethane, the bromo- and iodo-substituted 8 and 9 are monometallic species; however, these species favor meridional coordination in opposition to the facial coordination observed for the tert-butyl- and methoxy-substituted compounds. Molecular structures for species 5, 7, 8, and 9 have been solved by X-ray diffraction. Furthermore, the electronic spectrum of the amphiphile 1 was expected to be similar to those of facial/cis archetypes with similar substituents, but close resemblance was observed with the profile for those meridional/cis species, suggesting a similar coordination mode. This trend is discussed based on DFT calculations, where preference for the meridional/cis coordination mode appears related to the presence of tertiary amine nitrogen on the ligand, as when a long alkyl chain is attached to the [NN'O] headgroup.  相似文献   

11.
The reaction of manganese(II) acetate with a xanthene-bridged bis[3-(salicylideneamino)-1-propanol] ligand, H(4)L, afforded the tetramanganese(II,II,III,III) complex [Mn(4)(L)(2)(μ-OAc)(2)], which has an incomplete double-cubane structure. The corresponding reaction using manganese(II) chloride in the presence of a base gave the tetramanganese(III,III,III,III) complex [Mn(4)(L)(2)Cl(3)(μ(4)-Cl)(OH(2))], in which four Mn ions are bridged by a Cl(-) ion. A pair of L ligands has a propensity to incorporate four Mn ions, the arrangement and oxidation states of which are dependent on the coexistent anions.  相似文献   

12.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   

13.
Two mononuclear copper(II) complexes with the unsymmetrical tridentate ligand 2-[((imidazol-2-ylmethylidene)amino)ethyl]pyridine (HL), [Cu(HL)(H2O)](ClO4)2.2H2O (1) and [Cu(HL)Cl2] (2), have been prepared and characterized. The X-ray analysis of 2 revealed that the copper(II) ion assumes a pentacoordinated square pyramidal geometry with an N3Cl2 donor set. When 1 and 2 are treated with an equimolecular amount of potassium hydroxide, the deprotonation of the imidazole moiety promotes a self-assembled process, by coordination of the imidazolate nitrogen atom to a Cu(II) center of an adjacent unit, leading to the polynuclear complexes [[Cu(L)(H2O)](ClO4)]n (3) and [[Cu(L)Cl].2H2O]n (4). Variable-temperature magnetic data are well reproduced for one-dimensional infinite regular chain systems with J = -60.3 cm(-1) and g = 2.02 for 3 and J = -69.5 cm(-1) and g = 2.06, for 4. When 1 is used as a "ligand complex" for [M(hfac)2] (M = Cu(II), Ni(II), Mn(II), Zn(II)) in a basic medium, only the imidazolate-bridged trinuclear complexes [Cu(L)(hfac)M(hfac)2Cu(hfac)(L)] (M = Zn(II), Cu(II)) (5, 6) can be isolated. Nevertheless, the analogous complex containing Mn(II) as the central metal (7) can be prepared from the precursor [Cu(HL)Cl2] (2). All the trinuclear complexes are isostructural. The structures of 5 and 6 have been solved by X-ray crystallographic methods and consist of well-isolated molecules with Ci symmetry, the center of symmetry being located at the central metal. Thus, the copper(II) fragments are in trans positions, leading to a linear conformation. The magnetic susceptibility data (2-300 K), which reveal the occurrence of antiferromagnetic interactions between copper(II) ions and the central metal, were quantitatively analyzed for symmetrical three-spin systems to give the coupling parameters JCuCu = -37.2 and JCuMn = -3.7 cm(-1) with D = +/-0.4 cm(-1) for 6 and 7, respectively. These magnetic behaviors are compared with those for analogous systems and discussed on the basis of a localized-orbital model of exchange interactions.  相似文献   

14.
Yang L  Houser RP 《Inorganic chemistry》2006,45(23):9416-9422
Copper(I) chloro complexes were synthesized with a family of ligands, HL(R) [HL(R) = N-(2-pyridylmethyl)acetamide, R = null; 2-phenyl-N-(2-pyridylmethyl)acetamide, R = Ph; 2,2-dimethyl-N-(2-pyridylmethyl)propionamide, R = Me3; 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide, R = Ph3)]. Five complexes were synthesized from the respective ligand and cuprous chloride: [Cu(HL)Cl]n (1), [Cu2(HL)4Cl2] (2), [Cu2(HL(Ph))2(CH3CN)2Cl2] (3), [Cu2(HL(Ph)3)2Cl2] (4), and [Cu(HL(Me)3)2Cl] (5). X-ray crystal structures reveal that for all complexes the ligands coordinate to the Cu in a monodentate fashion, and inter- or intramolecular hydrogen-bonding interactions formed between the amide NH group and either amide C=O or chloro groups stabilize these complexes in the solid state and strongly influence the structures formed. Complexes 1-5 display a range of structural motifs, depending on the size of the ligand substituent groups, hydrogen bonding, and the stoichiometry of the starting materials, including a one-dimensional coordination polymer chain (1) and binuclear (2-4) or mononuclear (5) structures.  相似文献   

15.
A 3,5-di-tert-butyl-1,2-semiquinonato (DTBSQ) adduct of Mn(II) was prepared by a reaction between Mn(II)(TPA)Cl(2) (TPA = tris(pyridin-2-ylmethyl)amine) and DTBSQ anion and was isolated as a tetraphenylborate salt. The X-ray crystal structure revealed that the complex is formulated as a manganese(II)-semiquinonate complex [Mn(II)(TPA)(DTBSQ)](+) (1). The electronic spectra in solution also indicated the semiquinonate coordination to Mn. The exposure of 1 in acetonitrile to dioxygen afforded 3,5-di-tert-butyl-1,2-benzoquione and a bis(mu-oxo)dimanganese(III,III) complex [Mn(III)(2)(mu-oxo)(2)(TPA)(2)](2+) (2). The reaction of 2 with 3,5-di-tert-butylcatechol (DTBCH(2)) quantitatively afforded two equivalents of 1 under anaerobic conditions. The highly efficient catalytic oxidation of DTBCH(2) with dioxygen was achieved by combining the above two reactions, that is, by constructing a catalytic cycle involving both manganese complexes 1 and 2. It was revealed that dioxygen is reduced to water but not to hydrogen peroxide in the catalytic cycle.  相似文献   

16.
17.
The syntheses and structural, spectral, and electrochemical characterization of the dioxo-bridged dinuclear Mn(III) complexes [LMn(mo-O)(2)MnL](ClO(4))(2), of the tripodal ligands tris(6-methyl-2-pyridylmethyl)amine (L(1)) and bis(6-methyl-2-pyridylmethyl)(2-(2-pyridyl)ethyl)amine (L(2)), and the Mn(II) complex of bis(2-(2-pyridyl)ethyl)(6-methyl-2-pyridylmethyl)amine (L(3)) are described. Addition of aqueous H(2)O(2) to methanol solutions of the Mn(II) complexes of L(1) and L(2) produced green solutions in a fast reaction from which subsequently precipitated brown solids of the dioxo-bridged dinuclear complexes 1 and 2, respectively, which have the general formula [LMn(III)(mu-O)(2)Mn(III)L](ClO(4))(2). Addition of 30% aqueous H(2)O(2) to the methanol solution of the Mn(II) complex of L(3) ([Mn(II)L(3)(CH(3)CN)(H(2)O)](ClO(4))(2) (3)) showed a very sluggish change gradually precipitating an insoluble black gummy solid, but no dioxo-bridged manganese complex is produced. By contrast, the Mn(II) complex of the ligand bis(2-(2-pyridyl)ethyl)(2-pyridylmethyl)amine (L(3a)) has been reported to react with aqueous H(2)O(2) to form the dioxo-bridged Mn(III)Mn(IV) complex. In cyclic voltammetric experiments in acetonitrile solution, complex 1 shows two reversible peaks at E(1/2) = 0.87 and 1.70 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and the Mn(III)Mn(IV) <--> Mn(IV)(2) processes, respectively. Complex 2 also shows two reversible peaks, one at E(1/2) = 0.78 V and a second peak at E(1/2) = 1.58 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and Mn(III)Mn(IV) <--> Mn(IV)(2) redox processes, respectively. These potentials are the highest so far observed for the dioxo-bridged dinuclear manganese complexes of the type of tripodal ligands used here. The bulk electrolytic oxidation of complexes 1 and 2, at a controlled anodic potential of 1.98 V (vs Ag/AgCl), produced the green Mn(IV)(2) complexes that have been spectrally characterized. The Mn(II) complex of L(3) shows a quasi reversible peak at an anodic potential of E(p,a) of 1.96 V (vs Ag/AgCl) assigned to the oxidation Mn(II) to Mn(III) complex. It is about 0.17 V higher than the E(p,a) of the Mn(II) complex of L(3a). The higher oxidation potential is attributable to the steric effect of the methyl substituent at the 6-position of the pyridyl donor of L(3).  相似文献   

18.
A series of pyridine- and phenol-based ruthenium(II)-containing amphiphiles with bidentate ligands of the following types are reported: [(L(PyI))Ru(II)(bpy)(2)](PF(6))(2) (1), [(L(PyA))Ru(II)(bpy)(2)](PF(6))(2) (2), [(L(PhBuI))Ru(II)(bpy)(2)](PF(6)) (3), and [(L(PhClI))Ru(II)(bpy)(2)](PF(6)) (4). Species 1 and 2 are obtained by treatment of [Ru(bpy)(2)Cl(2)] with the ligands L(PyI) (N-(pyridine-2-ylmethylene)octadecan-1-amine) and L(PyA) (N-(pyridine-2-ylmethyl)octadecan-1-amine). The imine species 3 and 4 are synthesized by reaction of [Ru(bpy)(2)(CF(3)SO(3))(2)] with the amine ligands HL(PhBuA) (2,4-di-tert-butyl-6-((octadecylamino)methyl)phenol), and HL(PhClA) (2,4-dichloro-6-((octadecylamino)methyl)phenol). Compounds 1-4 are characterized by means of electrospray ionization (ESI(+)) mass spectrometry, elemental analyses, as well as electrochemical methods, infrared and UV-visible absorption and emission spectroscopies. The cyclic voltammograms (CVs) of 1-2 are marked by two successive processes around -1.78 and -2.27 V versus Fc(+)/Fc attributed to bipyridine reduction. A further ligand-centered reductive process is seen for 1. The Ru(II)/Ru(III) couple appears at 0.93 V versus Fc(+)/Fc. The phenolato-containing 3 and 4 species present relatively lower reduction potentials and more reversible redox behavior, along with Ru(II/III) and phenolate/phenoxyl oxidations. The interpretation of observed redox behavior is supported by density functional theory (DFT) calculations. Complexes 1-4 are surface-active as characterized by compression isotherms and Brewster angle microscopy. Species 1 and 2 show collapse pressures of about 29-32 mN·m(-1), and are strong candidates for the formation of redox-responsive monolayer films.  相似文献   

19.
The ditopic ligand PyPzOAPz (N-[(Z)-amino(pyrazin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) was synthesized by in situ condensation of methyl imino pyrazine-2-carboxylate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide. In this work we have also used two of our earlier ligands PzCAP (5-methyl-N-[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2009, 8215) and PzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2007, 1229). These ligands PzCAP, PzOAP and PyPzOAPz were made to react with Mn(ClO(4))(2)·6H(2)O to produce three pentanuclear Mn(II) clusters [Mn(5)(PzCAP)(6)](ClO(4))(4) (1), [Mn(5)(PzOAP)(6)](ClO(4))(4) (2) and [Mn(5)(PyPzOAPz)(6)](ClO(4))(4) (3). These complexes have been characterized by X-ray structural analyses and variable temperature magnetic susceptibility measurements. All complexes have a pentanuclear core with trigonal bipyramidal arrangement of Mn(II) atoms, where, the axial metal centers have a N(3)O(3) chromophore and the equatorial centers have N(4)O(2) with an octahedral arrangement. These Mn(5)(II) clusters 1, 2 and 3 show the presence of antiferromagnetic coupling within the pentanuclear manganese(II) core (J = -2.95, -3.19 and -3.00 cm(-1) respectively). Density functional theory calculations and continuous shape measurement (CShM) studies have been performed on these complexes to provide a qualitative theoretical interpretation of the antiferromagnetic behaviour shown by them. The pentanuclear Mn(II) cluster (1) on reaction with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion in CH(3)OH:H(2)O (60?:?40) forms a homoleptic [2 × 2] tetranuclear Cu(4)(II) grid [Cu(4)(PzCAP)(4)(NO(3))(2)](NO(3))(2)·8H(2)O (4). The same Cu(4)(II) grid is also obtained from a direct reaction between the ditopic ligand PzCAP with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion. This conversion of a cluster to a grid is a novel observation.  相似文献   

20.
Saha A  Abboud KA  Christou G 《Inorganic chemistry》2011,50(24):12774-12784
The syntheses, crystal structures, and magnetochemical characterization are reported for the new mixed-valent Mn clusters [Mn(2)(II)Mn(III)(O(2)CMe)(2)(edteH(2))(2)](ClO(4)) (1), [Mn(II)(2)Mn(III)(2)(edteH(2))(2)(hmp)(2)Cl(2)](Mn(II)Cl(4)) (2), [Mn(III)(6)O(2)(O(2)CBu(t))(6)(edteH)(2)(N(3))(2)] (3), [Na(2)Mn(III)(8)Mn(II)(2)O(4)(OMe)(2)(O(2)CEt)(6)(edte)(2)(N(3))(6)] (4), and (NEt(4))(2)[Mn(8)(III)Mn(2)(II)O(4)(OH)(2)-(O(2)CEt)(6)(edte)(2)(N(3))(6)](5), where edteH(4) is N,N,N',N'-tetrakis-(2-hydroxyethyl)ethylenediamine and hmpH is 2-(hydroxymethyl)pyridine. 1-5 resulted from a systematic exploration of the effect of different Mn sources, carboxylates, the presence of azide, and other conditions, on the Mn/edteH(4) reaction system. The core of 1 consists of a linear Mn(II)Mn(III)Mn(II) unit, whereas that of 2 is a planar Mn(4) rhombus within a [Mn(II)(2)Mn(III)(2)(μ(3)-OR)(2)] incomplete-dicubane unit. The core of 3 comprises a central [Mn(III)(4)(OR)(2)] incomplete-dicubane on either side of which is edge-fused a triangular [Mn(III)(3)(μ(3)-O)] unit. The cores of 4 and 5 are similar and consist of a central [Mn(II)(2)Mn(III)(2)(μ(3)-OR)(2)] incomplete-dicubane on either side of which is edge-fused a distorted [Mn(II)Mn(III)(3)(μ(3)-O)(2)(μ(3)-OR)(2)] cubane unit. Variable-temperature, solid-state direct current (dc) and alternating current (ac) magnetization studies were carried out on 1-5 in the 5.0-300 K range, and they established the complexes to have ground state spin values of S = 3 for 1, S = 9 for 2, and S = 4 for 3. The study of 3 provided an interesting caveat of potential pitfalls from particularly low-lying excited states. For 4 and 5, the ground state is in the S = 0-4 range, but its identification is precluded by a high density of low-lying excited states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号