首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The emission spectrum of the D(2) molecule has been studied at high resolution in the vacuum ultraviolet region 78.5-102.7 nm. A detailed analysis of the two D (1)Pi(u)-->X (1)Sigma(g) (+) and D(') (1)Pi(u) (-)-->X (1)Sigma(g) (+) electronic band systems is reported. New and improved values of the level energies of the two upper states have been derived with the help of the program IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656 (1993)], originally developed for atomic spectral analysis. A detailed comparison is made between the observed energy levels and solutions of coupled equations using the newest ab initio potentials by Wolniewicz and co-workers [J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); J. Mol. Spectros. 212, 208 (2002); 220, 45 (2003)] taking into account the nonadiabatic coupling terms for the D (1)Pi(u) state with the lowest electronic states B (1)Sigma(u) (+), C (1)Pi(u), and B(') (1)Sigma(u) (+). A satisfactory agreement has been found for most of the level energies belonging to the D and D(') states. The remaining differences between observation and theory are probably due to nonadiabatic couplings with other higher electronic states which were neglected in the calculations.  相似文献   

2.
Anion time-resolved photoelectron imaging has been used to investigate the electronic relaxation dynamics of C(6) (-) following excitation of the C (2)Pi(g)<--X (2)Pi(u) and 2 (2)Pi(g)<--X (2)Pi(u) 0(0) (0) transitions at 607 and 498 nm, respectively. Analysis of evolving photodetachment energy distributions reveals differing relaxation pathways from these prepared states. Specifically, the C (2)Pi(g) 0(0) level relaxes on a time scale of 620+/-30 fs to vibrationally hot ( approximately 2.0 eV) anion ground state both directly and indirectly through vibrationally excited levels of the intermediate-lying A (2)Sigma(g) (+) state that decay with a time scale of 2300+/-200 fs. In contrast, the 2 (2)Pi(g) 0(0) level relaxes much more quickly (<100 fs) to vibrationally hot ( approximately 2.5 eV) anion ground state directly and with transient population accumulation in the A (2)Sigma(g) (+), B (2)Sigma(u) (+), and C (2)Pi(g) electronic levels, as determined by spectral and time-scale analyses. This work also presents the experimental observation of the optically inaccessible B (2)Sigma(u) (+) state, which is found to have an electronic term value of 1.41+/-0.05 eV.  相似文献   

3.
4.
5.
The vacuum ultraviolet pulsed field ionization-photoelectron and photoionization efficiency spectra of NCCN have been measured in the energy region of 13.25-17.75 eV. The analyses of these spectra have provided accurate ionization energy (IE) values of 13.371+/-0.001, 14.529+/-0.001, 14.770+/-0.001, and 15.516+/-0.001 eV for the formation of NCCN(+) in the X(2)Pi(g), A(2)Sigma(g) (+), B(2)Sigma(u) (+), and C(2)Pi(u) states, respectively. The ionization energy [NCCN(+)(B(2)Sigma(u) (+))] value determined here indicates that the origin of the NCCN(+)(B(2)Sigma(u) (+)) state lies lower in energy by 25 meV than previously reported. A set of spectroscopic parameters for NCCN(+)(X(2)Pi(g)) has been calculated using high level ab initio calculations. The experimental spectra are found to consist of ionizing transitions populating the vibronic levels of NCCN(+), which consist of pure vibronic progressions, combination modes involving the symmetric CN stretch, the CC stretch, and even quanta of the antisymmetric CN stretch, and bending vibrations. These bands are identified with the guidance of the present ab initio calculations.  相似文献   

6.
The reaction of dicarbon molecules in their electronic ground, C2(X1Sigma(g)+), and first excited state, C2(a3Pi(u)), with acetylene, C2H2(X1Sigma(g)+), to synthesize the 1,3-butadiynyl radical, C4H(X2Sigma+), plus a hydrogen atom was investigated at six different collision energies between 10.6 and 47.5 kJ mol(-1) under single collision conditions. These studies were contemplated by crossed molecular beam experiments of dicarbon with three acetylene isotopomers C2D2(X1Sigma(g)+), C2HD (X1Sigma+), and 13C2H2(X1Sigma(g)+) to elucidate the role of intersystem crossing (ISC) and of the symmetry of the reaction intermediate(s) on the center-of-mass functions. On the singlet surface, dicarbon was found to react with acetylene through an indirect reaction mechanism involving a diacetylene intermediate. The latter fragmented via a loose exit transition state via an emission of a hydrogen atom to form the 1,3-butadiynyl radical C4H(X2Sigma+). The D(infinity)(h) symmetry of the decomposing diacetylene intermediate results in collision-energy invariant, isotropic (flat) center-of-mass angular distributions of this microchannel. Isotopic substitution experiments suggested that at least at a collision energy of 29 kJ mol(-1), the diacetylene isotopomers are long-lived with respect to their rotational periods. On the triplet surface, the reaction involved three feasible addition complexes located in shallower potential energy wells as compared to singlet diacetylene. The involvement of the triplet surface accounted for the asymmetry of the center-of-mass angular distributions. The detection of the 1,3-butadiynyl radical, C4H(X2Sigma+), in the crossed beam reaction of dicarbon molecules with acetylene presents compelling evidence that the 1,3-butadiynyl radical can be formed via bimolecular reactions involving carbon clusters in extreme environments such as circumstellar envelopes of dying carbon stars and combustion flames.  相似文献   

7.
Vacuum ultraviolet photoionization of C3   总被引:1,自引:0,他引:1  
Photoionization efficiency (PIE) curves for C(3) molecules produced by laser ablation are measured from 11.0 to 13.5 eV with tunable vacuum ultraviolet undulator radiation. A step in the PIE curve versus photon energy, obtained with N(2) as the carrier gas, supports the conclusion of very effective cooling of C(3) to its linear (1)Sigma(g)(+) ground state. The second step observed in the PIE curve versus photon energy could be the first experimental evidence of the C(3)(+)((2)Sigma(g)(+)) excited state. The experimental results, complemented by ab initio calculations, suggest a state-to-state vertical ionization energy of 11.70 +/- 0.05 eV between the C(3)(X(1)Sigma(g)(+)) and the C(3)(+)(X(2)Sigma(u)(+)) states. An ionization energy of 11.61 +/- 0.07 eV between the neutral and ionic ground states of C(3) is deduced using the data together with our calculations. Accurate ab initio calculations are performed for both linear and bent geometries on the lowest doublet electronic states of C(3)(+) using Configuration Interaction (CI) approaches and large basis sets. These calculations confirm that C(3)(+) is bent in its electronic ground state, which is separated by a small potential barrier from the (2)Sigma(u)(+) minimum. The gradual increase at the onset of the PIE curve suggests a geometry change between the ground neutral and cationic states. The energies between several doublet states of the ion are theoretically determined to be 0.81, 1.49, and 1.98 eV between the (2)Sigma(u)(+) and the (2)Sigma(g)(+),( 2)Pi(u), (2)Pi(g) excited states of C(3)(+), respectively.  相似文献   

8.
This article describes the scaling of plane-wave Born cross sections for the excitation of the H(2) molecule to four low-lying electronic states (B (1)Sigma(u) (+), C (1)Pi(u), B(') (1)Sigma(u) (+), and D (1)Pi(u)) by electron impact. The same BE and BEf scaling methods used on atoms were found to be equally effective for H(2) in converting Born cross sections into cross sections in good agreement with available experiments. These scaling methods are applicable only to dipole-allowed excitations. The possibility of using these scaling methods, as was done in atoms, to estimate the contribution of inner-shell excitations to the total ionization cross section via the excitation-autoionization mechanism is discussed, though this type of indirect ionization in molecules is not as common as in atoms.  相似文献   

9.
Ab initio calculations of low-lying electronic states of CrH are presented, including potential energies, dipole and transition dipole moment (TDM) functions, and radiative lifetimes for X (6)Sigma(+), A (6)Sigma(+), 3 (6)Sigma(+), 1 (6)Pi, 2 (6)Pi, 3 (6)Pi, and (6)Delta. Calculation of dynamic correlation effects was performed using the multistate complete active space second-order perturbation method, based on state-averaged complete active space self-consistent-field reference wave functions obtained with seven active electrons in an active space of 16 molecular orbitals. A relativistic atomic natural orbital-type basis set from the MOLCAS library was used for Cr. Good agreement is found between the current calculations and experiment for the lowest two (6)Sigma(+) states, the only states for which spectroscopic data are available. Potential curves for the 3 (6)Sigma(+) and 2 (6)Pi states are complicated by avoided crossings with higher states of the same symmetry, thus resulting in double-well structures for these two states. The measured bandhead T(0)=27 181 cm(-1), previously assigned to a (6)Pi<--X (6)Sigma(+) transition, is close to our value of T(0)=28 434 cm(-1) for the 2 (6)Pi state. We tentatively assign the ultraviolet band found experimentally at 30 386 cm(-1) to the 3 (6)Pi<--X (6)Sigma(+) transition for which the computed value is 29 660 cm(-1). The A (6)Sigma(+)<--X (6)Sigma(+) TDM and A (6)Sigma(+) lifetimes are found to be in reasonable agreement with previous calculations.  相似文献   

10.
The Floquet states of N(2) (2+) created by the interactions of the six lowest singlet (1 (1)Sigma(g) (+), 1 (1)Delta(g), 2 (1)Sigma(g) (+), 1 (1)Pi(u), 1 (1)Pi(g), and 1 (1)Sigma(u) (-)) states of the dication with intense (0.4 x 10(13) Wcm(2)) radiation have been studied using the recently developed multireference configuration interaction method with single and double excitations (MRCISD)-based approach. The adiabatic Floquet state coinciding near its minimum with the initial X (1)Sigma(g) (+) ground state and asymptotically correlating with A (1)Pi(u) (m = -1), i.e., with one less photon in the dressed state, is expected to be metastable, as is the ground state in the absence of a field, but to support up to the v(max) = 12 quasibound vibrational level in comparison with v(max) = 11 in the parent field-free X (1)Sigma(g) (+) ground state. The tunneling lifetimes of the highest vibrational levels in this adiabatic Floquet state are predicted to be several orders longer than those in the parent field-free state. Analysis of the complete basis set limit extrapolated MRCISD potential energy curve of the field-free X (1)Sigma(g) (+) state of N(2) (2+) calculated in the present work (R(e) = 1.130 A, omega(e) = 2011 cm(-1), omega(e)x(e) = 26.1 cm(-1)) is in good agreement with spectroscopic experimental data. Calculations on the field-free A (1)Pi(u) state (T(e) = 12 106 cm(-1), R(e) = 1.252 A, omega(e) = 1438 cm(-1), omega(e)x(e) = 23.5 cm(-1)) generally support earlier theoretical work and do not support reported experimental values.  相似文献   

11.
The geometries, energetics, and vertical detachment energies of Na2-(NH3)n (n = 0-6) were examined by ab initio molecular orbital methods in connection with their photoelectron spectra. One of the Na atoms is selectively solvated in the most stable structures for each n. The solvated Na is spontaneously ionized and the formation of a solvated electron occurs with increasing n, giving rise to the Na-Na+(NH3)n(e-)-type state. The ground and two lowest-lying excited states derived from the 11Sigma g+, 13Sigma u+, and 13Pi u states of Na2, respectively, are of ion-pair character though the 13Sigma u+-type state has an intermediate nature slowly changing to the radical-pair state with increasing n. On the other hand, the higher states stemming from the 11Sigma u+, 13Sigma g+, and 11Pi u states of Na2 show a developing radical-pair nature as n increases. The size dependences of the photoelectron spectra such as the near parallel shifts of the first and second bands, as well as the rapid red shifts of the higher bands, are studied on the basis of the electronic change of the neutrals by solvation.  相似文献   

12.
13.
A low-temperature gas-phase kinetics study of the reactions and collisional relaxation processes involving C2(X1Sigma(g)+) and C2(a3Pi(u)) in collision with O2 and NO partners at temperatures from 300 to 24 K is reported. The experiments employed a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) apparatus to attain low temperatures. The C2 species were created using pulsed laser photolysis at 193 nm of mixtures containing C2Cl4 diluted in N2, Ar, or He carrier gas. C2(X1Sigma(g)+) molecules were detected via pulsed laser-induced fluorescence in the (D1Sigma(u)+ <-- X1Sigma(g)+) system, and C2(a3Pi(u)) molecules were detected via pulsed laser-induced fluorescence in the (d 3Pi(g) <-- a 3Pi(u)) system. Relaxation of 3C2 by intersystem crossing induced by oxygen was measured at temperatures below 200 K, and it was found that this process remains very efficient in the temperature range 50-200 K. Reactivity of C2(X1Sigma(g)+) with oxygen became very inefficient below room temperature. Using these two observations, it was found to be possible to obtain the C2(X1Sigma(g)+) state alone at low temperatures by addition of a suitable concentration of O2 and then study its reactivity with NO without any interference coming from the possible relaxation of C2(a3Pi(u)) to C2(X1Sigma(g)+) induced by this reagent. The rate coefficient for reaction of C2(X1Sigma(g)+) with NO was found to be essentially constant over the temperature range 36-300 K with an average value of (1.6 +/- 0.1) x 10(-10) cm3 molecule(-1) s(-1). Reactivity of C2(a3Pi(u)) with NO was found to possess a slight negative temperature dependence over the temperature range 50-300 K, which is in very good agreement with data obtained at higher temperatures.  相似文献   

14.
The hyperfine structures of the 2 (3)Sigma(g) (+), 3 (3)Sigma(g) (+), and 4 (3)Sigma(g) (+) states of Na(2) have been resolved with sub-Doppler continuous wave perturbation facilitated optical-optical double resonance spectroscopy via A (1)Sigma(u) (+) approximately b (3)Pi(u) mixed intermediate levels. The hyperfine patterns of these three states are similar. The hyperfine splittings of the low rotational levels are all very close to the case b(betaS) limit. As the rotational quantum number increases, the hyperfine splittings become more complicated and the coupling cases become intermediate between cases b(betaS) and b(beta J) due to spin-rotation interaction. We present a detailed analysis of the hyperfine structures of these three (3)Sigma(g) (+) states, employing both case b(betaS) and b(beta J) coupling basis sets. The results show that the hyperfine splittings of the (3)Sigma(g) (+) states are mainly due to the Fermi-contact interaction. The Fermi contact constants for the two d sigma Rydberg states, the 2 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+), are 245+/-5 MHz and 225+/-5 MHz, respectively, while the Fermi contact constant of the s sigma 3 (3)Sigma(g) (+) Rydberg state is 210+/-5 MHz. The diagonal spin-spin and spin-rotation constants, and nuclear spin-electronic spin dipolar interaction parameters of the 3 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+) states are also obtained.  相似文献   

15.
Negative ion photoelectron spectroscopy was used to elucidate the electronic and geometric structure of the gaseous Al2N/Al2N- molecules, using photodetachment wavelengths of 416 nm (2.977 eV), 355 nm (3.493 eV), and 266 nm (4.661 eV). Three electronic bands are observed and assigned to the X2Sigma(u)+ <-- X1Sigma(g)+, A2Pi(u) <-- X1Sigma(g)+, and B2Sigma(g)+ <-- X1Sigma(g)+ electronic transitions, with the caveat that one or both excited states may be slightly bent. With the aid of density functional theory calculations and Franck-Condon spectral simulations, we determine the adiabatic electron affinity of Al2N, 2.571 +/- 0.008 eV, along with geometry changes upon photodetachment, vibrational frequencies, and excited-state term energies. Observation of excitation of the odd vibrational levels of the antisymmetric stretch (nu3) suggests a breakdown of the Franck-Condon approximation, caused by the vibronic coupling between the X2Sigma(u)+ and B2Sigma(g)+ electronic states through the nu3 mode.  相似文献   

16.
The photoionization and photodissociation dynamics of H(2) and D(2) in selected rovibrational levels of the B (1)Sigma(u) (+) and C (1)Pi(u) states have been investigated by velocity map ion imaging. The selected rotational levels of the B (1)Sigma(u) (+) and C (1)Pi(u) states are prepared by three-photon excitation from the ground state. The absorption of fourth photon results in photoionization to produce H(2)(+) X (2)Sigma(g)(+) or photodissociation to produce a ground-state H(1s) atom and an excited H atom with n >or= 2. The H(2) (+) ion can be photodissociated by absorption of a fifth photon. The resulting H(+) or D(+) ion images provide information on the vibrational state dependence of the photodissociation angular distribution of the molecular ion. The excited H(n >or= 2) atoms produced by the neutral dissociation process can also be ionized by the absorption of a fifth photon. The resulting ion images provide insight into the excited state branching ratios and angular distributions of the neutral photodissociation process. While the experimental ion images contain information on both the ionic and neutral processes, these can be separated based on constraints imposed on the fragment translational energies. The angular distribution of the rings in the ion images indicates that the neutral dissociation of molecular hydrogen and its isotopes is quite complex, and involves coupling to both doubly excited electronic states and the dissociation continua of singly excited Rydberg states.  相似文献   

17.
The geometries, the harmonic vibrational frequencies, and the Renner-Teller parameter have been reported for the NCO(+)(X (3)Sigma(-)), NCO(X (2)Pi,A (2)Sigma(+),B (2)Pi,2 (2)Sigma(+)), NCO(-)(X (1)Sigma(+)), CNO(+)(X), CNO(X (2)Pi,A (2)Sigma(+),B (2)Pi,2 (2)Sigma(+)), and CNO(-)(X (1)Sigma(+)) systems at the full valence-complete active space self-consistent-field (fv-CASSCF) level of theory. The (2)Pi electronic states of the NCO and CNO radicals have two distinct real vibrational frequencies for the bending modes and these states are subject to the type A Renner-Teller effect. The total energy of CNO(+) without zero point energy correction of the linear geometry is approximately 31 cm(-1) higher than the bent geometry at the fv-CASSCF level and the inversion barrier vanishes after the zero point energy correction; therefore, the ground state of the CNO(+) may possess a quasilinear geometry. The spin-orbit coupling constants estimated using atomic mean field Hamiltonian at the fv-CASSCF level of theory are in better agreement with the experimental values. The excitation energies, the electron affinity, and the ionization potential have been computed at the complete active space second order perturbation theory (CASPT2) and the multireference singles and doubles configuration (MRSD-CI) levels of theory. The computed values of the electric hyperfine coupling constants for the (14)N atom in the ground state of the NCO radical agree well with the experimental data. The magnetic hyperfine coupling constants (HFCC's) have been estimated employing the configuration selected MRSD-CI and the multireference singles configuration interaction (MRS-CI) methods using iterative natural orbitals (ino) as one particle basis. Sufficiently accurate value of the isotropic contribution to the HFCC's can be obtained using an MRS-CI-ino procedure.  相似文献   

18.
The phenomenon of electronic orbital angular momentum L uncoupled from its internuclear axis has been observed in the sodium dimer using high-resolution cw optical-optical double-resonance spectroscopy. When L uncoupling occurs, the degeneracy of Lambda doubling is removed. In our experiment, the intermediate B (1)Pi(u) state of Na(2) is excited from the thermally populated ground X (1)Sigma(g) (+) state by a single-line Ar(+) laser. Then, a single-mode dye laser is used to probe the Rydberg states from the intermediate state. The signals are detected by monitoring the UV fluorescence from the triplet gerade states back to the a (3)Sigma(u) (+) state via collision energy transfer. Under our experimental resolution, the splitting of Lambda doubling in the 5 (1)Delta(g) state of Na(2) can be measured. A total of 136 rovibronic levels with ef parities have been assigned to the 5 (1)Delta(g) state. The Lambda-splitting constants deduced from these data are q(0)=0.376(90)x10(-4) cm(-1), q(v)=0.114(6)x10(-4) cm(-1), and mu=0.76(33)x10(-8) cm(-1). In general, the Lambda splitting of the Delta states is considerably smaller than that of the Pi states. However, the first-order splitting constants q(0) and q(v) reported here are larger than those in the B (1)Pi(u) state. This is due to the L uncoupling of the Rydberg states.  相似文献   

19.
Line oscillator strengths in 16 electric dipole-allowed bands of 14N2 in the 93.5-99.5 nm (106,950-100,500 cm(-1)) region have been measured at an instrumental resolution of 6.5 x 10(-4) nm (0.7 cm(-1)). The transitions terminate on vibrational levels of the 3psigma 1Sigma u (+), 3ppi 1Pi u, and 3ssigma 1Pi u Rydberg states and of the b' 1Sigma u (+) and b 1Pi u valence states. The J dependences of band f values derived from the experimental line f values are reported as polynomials in J'(J'+1) and are extrapolated to J'=0 in order to facilitate comparisons with results of coupled-Schrodinger-equation calculations that do not take into account rotational interactions. Most bands in this study reveal a marked J dependence of the f values and/or display anomalous P-, Q- and R-branch intensity patterns. These patterns should help inform future spectroscopic models that incorporate rotational effects, and these are critical for the construction of realistic atmospheric radiative transfer models. Linewidth measurements are reported for four bands. Information provided by the J dependences of the experimental linewidths should be of use in the development of a more complete understanding of the predissociation mechanisms in N2.  相似文献   

20.
We have recorded spectra involving the 3-1, 4-2, 2-0, and 2-2 bands of the C" 5Pi(ui)-A' (5)Sigma+(g) electronic system of N(2) using optogalvanic detection in a discharge through a supersonic jet expansion of argon mixed with a trace of nitrogen gas. The spectra have an effective rotational temperature of about 45 K. They involve all five spin-orbit components of the C" 5Pi(ui) state, which has allowed for precise determination of the spin-orbit coupling in this state. Analysis of the C" 5Pi(ui) state Lambda-doubling shows that it is caused primarily by a first-order spin-spin effect rather than by interaction with Sigma(u) (+/-) states. Our results allow us to assign lines in the 4-2 and 2-0 bands observed in a fluorescence depletion experiment conducted over ten years ago [Ch. Ottinger and A. F. Vilesov, J. Chem. Phys. 103, 9929 (1995)], and to comment on the suggestion that perturbations to the C (3)Pi(u) v=1 level of N(2) arise from interactions with the C" 5Pi(ui) state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号