首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive, selective, precise and stability indicating high-performance thin-layer chromatographic method of analysis of nelfinavir mesylate both as a bulk drug and in formulations was developed and validated. The method employed TLC aluminium plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of toluene-methanol-acetone (7:1.5:1.5, v/v/v). This system was found to give compact spots for nelfinavir mesylate (Rf value of 0.45±0.02). Nelfinavir mesylate was subjected to acid and alkali hydrolysis, oxidation, dry heat treatment and photodegradation. Also the peaks of degraded products were well resolved from the pure drug with significantly different Rf values. Densitometric analysis of nelfinavir mesylate was carried out in the absorbance mode at 250 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.999±0.002 in the concentration range of 1000-6000 ng per spot. The mean value of correlation coefficient, slope and intercept were 0.999±0.002, 0.014±0.001 and 21.73±1.26, respectively. The method was validated for precision, robustness and recovery. The limits of detection and quantitation were 60 and 140 ng per spot, respectively. Statistical analysis proves that the method is repeatable and selective for the estimation of the said drug. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating one.  相似文献   

2.
A simple, sensitive, selective, precise and stability indicating high-performance thin-layer chromatographic method for determination of gatifloxacin both as a bulk drug and from polymeric nanoparticles was developed and validated as per the International Conference on Harmonization (ICH) guidelines. The method employed thin-layer chromatography (TLC) aluminium plates precoated with silica gel 60F-254 as the stationary phase and the mobile phase consisted of n-propanol-methanol-concentrated ammonia solution (25%) (5:1:0.9, v/v/v). This solvent system was found to give compact spots for gatifloxacin (Rf value of 0.60 ± 0.02). Densitometric analysis of gatifloxacin was carried out in the absorbance mode at 292 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r = 0.9953 with respect to peak area in the concentration range of 400-1200 ng spot−1. The mean value (±S.D.) of slope and intercept were 9.66 ± 0.05 and 956.33 ± 27.67, respectively. The method was validated for precision, accuracy, ruggedness and recovery. The limits of detection and quantitation were 2.73 and 8.27 ng spot−1, respectively. Gatifloxacin was subjected to acid and alkali hydrolysis, oxidation, photodegradation and dry heat treatment. The drug undergoes degradation under acidic and basic conditions and upon wet and dry heat treatment. The degraded products were well separated from the pure drug. The statistical analysis proves that the developed method for quantification of gatifloxacin as bulk drug and from polymeric nanoparticles is reproducible and selective. As the method could effectively separate the drug from its degradation products, it can be employed as stability-indicating one.  相似文献   

3.
In the present study a novel stability‐indicating high‐performance thin‐layer chromatography (HPTLC) method for quantitative determination of silybin in bulk drug and nanoemulsion formulation has been developed and validated on silica using solvent chloroform–acetone–formic acid (9 : 2 : 1 v/v/v) (Rf of silybin 0.46 ± 0.05) in the absorbance mode at 296 nm. The method showed a good linear relationship (r2 ± 0.999) in the concentration range 25–1500 ng per spot. It was found to be linear, accurate, precise, specific, robust and stability‐indicating and can be applied for quality control and standardization of several multi‐component hepatoprotective formulations as well as for stability testing of different dosage forms. The method proposed was also used to investigate the kinetics of acidic and alkaline degradation processes by quantification of drug at different temperature to calculate the activation energy and half‐life for silymarin degradation. Copyright © 2009 John Wiley & Sons, Ltd  相似文献   

4.
《印度化学会志》2021,98(11):100215
We report herein an accurate, precise, and economical stability indicating high performance thin layer chromatographic (HPTLC) method developed to assess the safety of olanzapine in pharmaceutical formulations. Olanzapine was subjected to forced degradation studies to assess the effect of environmental conditions on its stability. Stress conditions such as hydrolysis under acidic and alkaline environment, degradation and oxidation by heat, light and air were used to study the stability of olanzapine. Mobile phase comprising of toluene: methanol (5:5 v/v) and aluminum plate pre-coated with silica gel 60 F254 as a stationary phase were used for the development of chromatogram by HPTLC technique. Densitometric analysis of olanzapine carried out at 297 ​nm gave sharp symmetrical peak with Rf value of 0.50 and a satisfactory baseline resolution for all components. The drug was found to undergo degradation under acidic, alkaline and oxidative conditions. A single distinct peak in acidic and alkaline media while two peaks obtained as a result of oxidative degradation were well resolved along with the parent drug. The degradation products and parent drug showed significantly different Rf values. The developed HPTLC method gave quick and reproducible results for the olanzapine content in the tablets. The mean recoveries were 100.75% which confirms accuracy of the proposed method. The method was further validated for specificity, ruggedness and robustness. Based on the results, it can be suggested that the developed HPTLC method is quite efficient in separating the olanzapine from its degradation products; hence it can be used by pharmaceutical industries and regulatory bodies for the routine analysis of olanzapine in various pharmaceutical dosage forms.  相似文献   

5.
A new, simple, sensitive, selective, precise and robust high-performance thin-layer chromatographic (HPTLC) method for analysis of trigonelline was developed and validated for the determination of trigonelline in herbal extracts and in pharmaceutical dosage forms. Analysis of trigonelline was performed on TLC aluminium plates pre-coated with silica gel 60F-254 as the stationary phase. Linear ascending development was carried out in twin trough glass chamber saturated with mobile phase consisting of n-propanol-methanol-water (4:1:4, v/v/v) at room temperature (25 ± 2 °C). Camag TLC scanner III was used for spectrodensitometric scanning and analysis in absorbance mode at 269 nm. The system was found to give compact spots for trigonelline (Rf value of 0.46 ± 0.02). The linear regression analysis data for the calibration plots showed good linear relationship with r2 = 0.9991 ± 0.0002 in the concentration range 100-1200 ng spot−1 with respect to peak area. According to the International Conference on Harmonization (ICH) guidelines the method was validated for precision, recovery, robustness and ruggedness. The limits of detection and quantification were determined. The trigonelline content of herbal extracts quantified and estimated from the formulation was found to be well within limits (±5% of the labeled content of the formulations). Statistical analysis of the data showed that the method is reproducible and selective for the estimation of trigonelline.  相似文献   

6.
A stability-indicating forced-degradation study of valdecoxib was conducted using high performance thin layer chromatography (HPTLC). It was used to analyze valdecoxib as bulk drug and as tablets. Undegraded valdecoxib was eluted with a retardation factor, Rf, of 0.56. Valdecoxib was forcibly degraded by exposure to alkali, acid, oxidation, and light, the greatest degradation occurring under basic conditions. Base-degraded valdecoxib gave an additional peak with an Rf value of 0.76. The calibration curve was linear in the range of 0.2-1 microg/microL with a correlation coefficient of 0.9952. Complete validation was carried out for precision (inter-day, intra-day, repeatability), accuracy, and robustness. All the data were analyzed statistically. This HPTLC procedure shows the reliability needed for use as a stability-indicating method. It can quantify valdecoxib in bulk and in tablets and also resolves the degraded peak of valdecoxib. This method is also useful for studying the degradation pattern and degradation mechanism of valdecoxib.  相似文献   

7.
An HPTLC method for analysis of Exemestane in bulk and pharmaceutical formulation has been established and validated. The analyte was separated on aluminium plates precoated with silica gel 60 F254. The mobile phase was chloroform:methanol 9.2:0.8 (v/v). Quantification was done by densitometric scanning at 247 nm. Response was a linear function of Exemestane concentration in the range of 100–500 μg mL−1. The limit of detection and quantification for Exemestane were 5.8 and 17.58 μg mL−1, respectively. Average recovery of Exemestane was 100.1, which shows that the method was free from interference from excipients present in the formulation. The established method enabled accurate, precise, and rapid analysis of Exemestane in bulk as well as pharmaceutical formulation.  相似文献   

8.
Kaul N  Agrawal H  Paradkar AR  Mahadik KR 《Talanta》2004,62(4):843-852
A sensitive, selective, precise and stability-indicating high-performance thin-layer chromatographic method of analysis of nevirapine both as a bulk drug and in formulations was developed and validated. The solvent system consisted of toluene-carbon tetrachloride-methanol-acetone-ammonia (3.5:3.5:2.0:1.0:0.05, v/v/v/v/v). Densitometric analysis of nevirapine was carried out in the absorbance mode at 289nm. This system was found to give compact spots for nevirapine (R(f) value of 0.44+/-0.02). Nevirapine was subjected to acid and alkali hydrolysis, oxidation, dry heat and wet heat treatment and photodegradation. The drug undergoes degradation under acidic, basic conditions and oxidation. Also the degraded products were well resolved from the pure drug with significantly different R(f) values. Linearity was found to be in the range of 30-1000ng/spot with significantly high value of correlation coefficient. The linear regression analysis data for the calibration plots showed good linear relationship with r(2)=0.998+/-0.002 in the working concentration range of 300ng/spot to 1000ng/spot. The mean value of slope and intercept were 0.073+/-0.005 and 36.78+/-1.50, respectively. The method was validated for precision, robustness and recovery. The limit of detection and quantitation were 5 and 10ng/spot, respectively. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating one. Moreover, the proposed HPTLC method was utilized to investigate the kinetics of acid degradation process. Arrhenius plot was constructed and activation energy was calculated.  相似文献   

9.
A simple selective precise and stability-indicating high performance thin layer chromatographic method of analysis of Paroxetine hydrochloride both as a bulk drug and in formulations was developed and validated. The method employed TLC (Thin Layer Chromatography) aluminum precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of butanol:acetic acid:water (8:2:0.5, v/v/v). This system was found to give compact spots for Paroxetine HCl (Rf, retardation factor, value-0.48 ± 0.02). Paroxteine HCl was subjected to acid and alkali hydrolysis, oxidation and photodegradation, where the degraded product was well separated from the pure drug. Densitometric analysis of Paroxetine hydrochloride was carried out in the absorbance mode at 295 nm. The linear regression analysis data for the calibration spots showed good relationship with (regression) r2 = 0.9903 in the amount range of 300-1500 ng (nanogram) per spot. The mean value of co-relation co-efficient, slope and intercept were 0.9903 ± 0.001, 5.38 ± 0.058 and 182.5 ± 2.16 respectively. The method was validated for precision, recovery and robustness. The limits of detection and quantitation were 50 and 150 ng, respectively. The drug doesnot undergo degradation with oxidation, but gets affected in acidic and alkaline conditions. The acid and alkali degradation showed extra peaks at 0.4 and 0.08 Rf, respectively. This indicates that the drug is susceptible to acidic and alkaline medium. As the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one.  相似文献   

10.
A new, simple, accurate and precise high‐performance thin‐layer chromatographic method has been developed and validated for simultaneous determination of an anthelmintic drug, albendazole, and its active metabolite albendazole, sulfoxide. Planar chromatographic separation was performed on aluminum‐backed layer of silica gel 60G F254 using a mixture of toluene–acetonitrile–glacial acetic acid (7.0:2.9:0.1, v /v/v) as the mobile phase. For quantitation, the separated spots were scanned densitometrically at 225 nm. The retention factors (R f) obtained under the established conditions were 0.76 ± 0.01 and 0.50 ± 0.01 and the regression plots were linear (r 2 ≥ 0.9997) in the concentration ranges 50–350 and 100–700 ng/band for albendazole and albendazole sulfoxide, respectively. The method was validated for linearity, specificity, accuracy (recovery) and precision, repeatability, stability and robustness. The limit of detection and limit of quantitation found were 9.84 and 29.81 ng/band for albendazole and 21.60 and 65.45 ng/band for albendazole sulfoxide, respectively. For plasma samples, solid‐phase extraction of analytes yielded mean extraction recoveries of 87.59 and 87.13% for albendazole and albendazole sulfoxide, respectively. The method was successfully applied for the analysis of albendazole in pharmaceutical formulations with accuracy ≥99.32%.  相似文献   

11.
《印度化学会志》2023,100(9):101060
Monobenzone, a mono benzyl ether of hydroquinone, is used as a topical drug for skin depigmentation. It increases the excretion of melanin from melanocytes. A novel stability-indicating high performance liquid chromatographic approach has been established in the current study to identify related compounds and assay of Monobenzone. The Agilent 1260 system was used for the HPLC analysis, and a gradient method using 0.1% orthophosphoric acid in water and acetonitrile as the eluent was used to separate Monobenzone from known contaminants and degradation products on a Zorbax SB-phenyl (250 mm x 4.6 mm) 5 μm column. The flow rate was set at 0.8 mL/min, the column oven temperature was 30 °C, and the detector wavelength was maintained at 215 nm. The relative retention times for Hydroquinone and Monobenzone dimer were around 0.35 and 1.86 respectively, while the Monobenzone retention time was approximately 10.4 min. The total run time was 30 min. For all known analytes spanning the concentration range from LOQ to 200% of the specification level, the calibration plot revealed a linear relationship (minimum r=0.999). All known analytes' LOD and LOQ were found to be within 0.06–0.10 μg/mL and 0.15–0.24 μg/mL, respectively. A recovery study determined the accuracy of the proposed method. For Hydroquinone and Monobenzone dimer, mean recovery was found to be in the range of 95.86%–99.89% and 93.02%–99.84% respectively. The repeatability study showed that the method is precise enough within acceptable limits. Studies on solution stability and robustness produced results that fell within acceptable bounds. The proposed method shows excellent linearity, accuracy, precision, specificity, robustness, LOD, LOQ and system suitability findings. Additionally, the forced degradation study showed that the approach was stability indicating in nature.  相似文献   

12.
Reversed-phase high performance liquid chromatography (LC) method is developed for the assay of sodium montelukast in coated tables and its photodegradation kinetics. An isocratic LC separation is performed on a Zorbax XDB C18 column using a mobile phase of acetonitrile-methanol-water (pH 3.8) (75:10:15, v/v/v) at a flow rate of 0.8 mL/min and detection at 280 nm. The detector response for sodium montelukast is linear over the concentration range from 5-35 μg/mL (r = 0.9999). The specificity of the method is proved using stress conditions. The solutions are exposed to UV radiation (352 nm), alkaline and acid hydrolysis, oxidation, and temperature (80 °C). The intra- and inter-day precision show suitable results (RSD < 0.49%). The accuracy of analytical method is 100.04% (RSD = 0.44%). Detection and quantification limits are 0.10 and 0.32 μg/mL respectively. The robustness of the method is assured after small changes in chromatographic conditions. The kinetic of photodegradation using a LC method is established and it can be described by zero-order kinetics. This developed method show to be viable for the determination of sodium montelukast in pharmaceutical dosage form and satisfactory in the determination of the kinetics of degradation.  相似文献   

13.
Two simple, specific, sensitive, accurate and precise stability indicating methods were described for quantitative determination of the anthelmintics drug Niclosamide. The first method was high performance liquid chromatographic with the use of a reversed phase hibarR C-18 column (250 mm × 4.66 mm, 5 μm) and mobile phase of methanol: 1 mM ammonium phosphate buffer (85:15 v/v) at a flow rate of 1.2 mL/min. The retention time of drug was found to be 6.45 ± 0.02 min. Quantification of drug was achieved with diode array detection (DAD) at 332 nm. Linear calibration curve was obtained in concentration range 0.01–100 μg/mL with r2 value of 0.999. The limit of detection and limit of quantification were found to be 0.048 μg/mL and 0.01 μg/ml respectively. The second method involved a high performance thin layer liquid chromatographic. Chromatographic separation was carried out with precoated silica gel G60 F254 aluminum sheets using toluene:ethyl acetate (7:3% v/v) as a mobile phase. Linearity of proposed method was found to be 200–700 ng/band at 332 nm with retention factor of 0.59 and r2 value of 0.998. The limit of detection and limit of quantification were found to be 36.21 ng/band and 109.7 ng/band respectively. Both the developed methods were successfully validated as per International Conference on Harmonization guideline (ICH). Niclosamide was subjected to different stress conditions. The degraded product peaks were well resolved from the pure drug peak with significant difference in their retention time. Stress samples were successfully assayed by developed high performance liquid chromatographic and high performance thin layer liquid chromatographic method. Statistically analysis proves that there were no statistical significant differences between two developed methods.  相似文献   

14.
A simple, precise, and rapid stability-indicating reversed-phase-HPLC method was developed and validated for the estimation of metformin (MET), dapagliflozin (DAP), and saxagliptin (SAX) combination in bulk and tablet dosage forms. The proposed method uses a Kromasil C18 column (150 × 4.6 mm, 5 μm) with column oven temperature of 30°C and mobile phase containing a mixture of 60% phosphate buffer (pH = 3) and 40% acetonitrile. The flow rate was set at 1.0 mL/min, and the injection volume was 10 μL. The detection was carried out at 230 nm using a photodiode array detector, and the total run time was 4 min. The proposed method was validated according to International Council for Harmonisation (ICH) guidelines for specificity, linearity, precision, accuracy, robustness, and solution stability. The method is linear over the range of 125–750 μg/mL for MET, 1.25–7.5 μg/mL for DAP, and 0.625–3.75 μg/mL for SAX. The observed correlation coefficients (R2) for MET, DAP, and SAX are >0.999. The proposed method is precise, and the percentage relative standard deviation was found to be between 0.4 and 0.8. The observed percentage recoveries were between 98.51 and 100.80 for all three compounds. The product was subjected to stress conditions of acid, base, oxidative, thermal, and photolytic degradation. The product was found to degrade significantly in oxidative, acid, and base hydrolysis degradation conditions, and the degradation products were well determined from the active peaks, thus proving the stability-indicating power of the method. The developed and validated stability-indicating reversed-phase-HPLC method was appropriate for quantitative determination of these drugs in pharmaceutical preparations and also for quality control in bulk manufacturing.  相似文献   

15.
Summary HPTLC densitometry and HPLC are considered for the determination of azidothymidine and its degradation product thymine in pharmaceutical dosage forms. In HPTLC the substances were separated on silica gel with fluorescence indicator in methanol-chloroform (1090) and methanol-chloroform (1585) systems. Absorbance measurement (detection of reflectance) of the separated substances was carried outin situ at 268 nm using four-level calibration (external standard, linear regression function) in the concentration range of 25–100 ng thymine/spot and using single-level calibration (external standard) at the concentration of 100 ng azidothymidine/spot. HPLC was carried out using RP-18 stationary phase and methanol+aqueous 0.03 mol/l KH2PO4 (18+82, v/v) as the mobile phase. The temperature was 50°C and the detection wavelength 266 nm. The detection limit of thymidine was 0.05%. The concentration range for azidothymidine was 0.5–1.5 mg/ml and for thymine 1–40 g/ml (for an injection volume of 10 l). The results were evaluated by linear regression analysis.  相似文献   

16.
A sensitive, selective, precise and stability-indicating high-performance thin-layer chromatographic method of analysis of lamivudine both as a bulk drug and in formulations was developed and validated. The solvent system consisted of carbon tetrachloride – methanol – chloroform - acetonitrile (7.0: 3.0: 2.0: 1.5, v/v/v/v). Densitometric analysis of lamivudine was carried out in the absorbance mode at 275 nm. This system was found to give compact spots for lamivudine (RF value of 0.36 ± 0.02) following double development of chromatoplates with the same mobile phase. Lamivudine was subjected to acid and alkali hydrolysis, oxidation, dry heat and wet heat treatment and photo degradation. The drug undergoes degradation under acidic, basic conditions, oxidation, wet heat and photo degradation. Also the degraded products were well resolved from the pure drug with significantly different RF values. Linearity was found to be in the range of 50 – 1000 ng spot–1 with significantly high value of correlation coefficient. The linear regression analysis data for the calibration plots showed good linear relationship with r2 = 0.9994 ± 0.05 in the working concentration range of 300 ng spot–1 to 1000 ng spot–1. The mean value of slope and intercept were 0.11 ± 0.08 and 10.47 ± 1.21, respectively. The method was validated for precision, robustness and recovery. The limit of detection and quantitation were 15 ng spot–1 and 40 ng spot–1 respectively. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating one. Moreover, the proposed HPTLC method was utilized to investigate the kinetics of acid degradation process. Arrhenius plot was constructed and activation energy was calculated.  相似文献   

17.
Two validated chromatographic methods developed for the analysis of S Clopidogrel bisulphate in the presence of its related substances listed in the United States and British Pharmacopoeias including its inactive R enantiomer are described. The first method is a simple thin layer chromatographic (TLC) method where separation is performed on pre-coated silica gel 60 F254 plates using methanol/diethylamine/heptanes/water containing 20 mg vancomycin hydrochloride (7 : 7 : 1.5 : 0.5 vol. %) as a mobile phase. Rf values were found to be 0.69, 0.74, 0.78, 0.84 and 0.88 for R clopidogrel, S clopidogrel, related substances A, B1 and B2, respectively. The second method depends on the separation by HPLC on a Lux polysaccharide chiral column with UV detection at 220 nm using 0.1 vol. % diethyl amine in methanol pumped at a rate of 1 mL min?1. Retention times were found to be 1.90 min, 2.82 min, 3.00 min, 3.27 min and 3.71 min for the related substances A, B1, C which are clopidogrel R enantiomer, B2, and S clopidogrel, respectively. The proposed methods were validated in accordance with the ICH guidelines and successfully applied to the determination of S clopidogrel bisulphate in pure powder and dosage forms without interference from the excipients and to affirm the dosage form to be pure S clopidogrel and devoid of the R enantiomer, which is inactive.  相似文献   

18.
A stability‐indicating MEKC method was developed and validated for the simultaneous determination of aliskiren (ALI) and hydrochlorothiazide (HCTZ) in pharmaceutical formulations using ranitidine as an internal standard (IS). Optimal conditions for the separation of ALI, HCTZ and its major impurity chlorothiazide (CTZ), IS and degradation products were investigated. The method employed 47 mM Tris buffer and 47 mM anionic detergent SDS solution at pH 10.2 as the background electrolyte. MEKC method was performed on a fused‐silica capillary (40 cm) at 28°C. Applied voltage was 26 kV (positive polarity) and photodiode array (PDA) detector was set at 217 nm. The method was validated in accordance with the ICH requirements. The method was linear over the concentration range of 5–100 and 60–1200 μg/mL for HCTZ and ALI, respectively (r2>0.9997). The stability‐indicating capability of the method was established by enforced degradation studies combined with peak purity assessment using the PDA detection. Precision and accuracy evaluated by RSD were lower than 2%. The method proved to be robust by a fractional factorial design evaluation. The proposed MEKC method was successfully applied for the quantitative analysis of ALI and HCTZ both individually and in a combined dosage tablet formulation to support the quality control.  相似文献   

19.
20.
A stability-indicating high-performance thin-layer chromatography (HPTLC) method was developed and validated for simultaneous determination of steroidal hormones levonorgestrel and ethinyloestradiol both in bulk drug and in low-dosage oral contraceptives. Optimization of conditions for the spectrodensitometric procedure was reached by eluting HPTLC silica gel plates in a 10 cm × 10 cm horizontal chamber. The solvent system consisted of hexane-chloroform-methanol (1.0:3.0:0.25, v/v/v). This system was found to give compact, dense and typical peaks for both levonorgestrel (Rf = 0.65 ± 0.03) and ethinyloestradiol (Rf = 0.43 ± 0.02). Densitometric analysis of the drugs was carried out in the reflectance mode at 225 nm by using a computer controlled densitometric scanner. The calibration curves of levonorgestrel and ethinyloestradiol were linear in the range of 200-800 and 40-160 ng per spot, respectively. The method was validated for precision, robustness and recovery. As the proposed method can effectively separate the drugs from their degradation products, it can be employed as a stability-indicating method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号