首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of Th recovery on hydrofluoric acid (HF) concentration in nitric acid (HNO3) solutions (1–5 mol/dm3) containing 1 × 10−6 mol/dm3 of Th and various concentrations of HF and the elution behavior were studied using a commercially available UTEVA (for uranium and tetravalent actinide) resin column. Thorium recovery decreased with an increase in HF concentration in the sample solutions. The concentration of HF at which Th recovery started to decrease was ∼1 × 10−4 mol/dm3 in 1 mol/dm3 HNO3 solution, ∼1 × 10−3 mol/dm3 in 3 mol/dm3 HNO3 solution, and ∼1 × 10−2 mol/dm3 in 5 mol/dm3 HNO3 solution. When Al(NO3)3 (0.2 mol/dm3) or Fe(NO3)3 (0.6 mol/dm3) was added as a masking agent for F to the Th solution containing 1 × 10−1 mol/dm3 HF and 1 mol/dm3 HNO3, Th recovery improved from 1.4 ± 0.3% to 95 ± 5% or 93 ± 3%. Effective extraction of Th using UTEVA resin was achieved by selecting the concentration of HNO3 and/or adding masking agents such as Al(NO3)3 according to the concentration of HF in the sample solution.  相似文献   

2.
The thermal lens optical scheme-design was optimised for microscopic measurements in microchannels. The efficient pathlength of the sample, irradiated volume, and the diameter of the thermal lens were estimated. Experimental time curves of development of the thermal lens and periodical oscillations of the signal due to convectional heat transfer are in good agreement with the theoretically expected behaviour. Noise sources (laser noises, instrumental flicker noise, convection, and flow noise) were studied. The possible effect of probe laser power on transient and steady-state thermal lens measurements were estimated. The effect of solvent absorption on the performance characteristics is shown. Under the optimum optical scheme-design, the limits of detection of ferroin and Sunset Yellow FCF at 488.0 nm are 1×10−8 and 4×10−9 mol dm−3, respectively (corresponding quantities in the detection volume are 3×10−21 and 1×10−21 mol). The total linear calibration range is n×10−8 to n×10−4 mol dm−3, the repeatability R.S.D. for this range is 3-7%. The optimised instrument was also used for the determination of characteristic rate constants of formation and dissociation of ferroin at the level of n × 10−8 mol dm−3. Some analytical applications are discussed.  相似文献   

3.
Gold nanoparticles (Au nps) have been synthesized in aqueous solution of polyvinyl pyrrolidone (PVP) by gamma radiolysis from HAuCl4·3H2O precursor and in presence of small concentrations of Ag+, 2-propanol and acetone. The effect of different experimental parameters, such as concentration of reactant, molecular weight of PVP on nanoparticle formation was studied. TEM image confirmed that spherical Au nps were formed when PVP of molecular weight 360,000 Da was used as capping agent. H2O2 is a reactant in the enzyme catalyzed reaction of o-phenylene diamine (o-PDA). The reaction product has a weak absorption in the yellow region of the spectrum. When this product interacts with Au nps, it leads to enhancement of the absorption peak. The nanoparticles synthesized by radiation method were used for estimation of H2O2. The absorbance value of this peak at λmax was observed to change with H2O2 concentration, which was monitored for estimation of H2O2. The response is linear in the range of 2.5×10−6 mol dm−3 to 2×10−4 mol dm−3 and 1×10−7 mol dm−3 to 3×10−6 mol dm−3 H2O2 in two separate sets of experimental parameters with detection limit 1×10−7 mol dm−3.  相似文献   

4.
A procedure for the determination of gallium by differential pulse adsorptive stripping voltammetry (DPADSV), using different complexing agents (ammonium pyrrolidine dithiocarbamate (APDC), pyrocatechol violet (PCV) and diethyldithiocarbamate (DDTC)), has been optimized. The selection of the experimental conditions was made using experimental design methodology. Under these conditions, the calibration was made and the detection limit was determined for each gallium-ligand complex. A robust regression method was applied which allowed the elimination of anomalous points. The detection limit, with α=β=0.05, for gallium-APDC complex was 5.0×10−8 mol dm−3, for gallium-PCV complex was 9.9×10−9 mol dm−3, and the lowest detection limit (1.3×10−9 mol dm−3) was obtained with DDTC. For this reason, DDTC was selected for the determination of the gallium concentration in a certificate sample and in a spiked tap water sample. The linear dynamic range for gallium-APDC complex was from 5.0×10−8 to 2.7×10−7 mol dm−3, for gallium-PCV complex was from 5.0×10−9 to 4.8×10−7 mol dm−3, and for gallium-DDTC complex was from 1.0×10−9 to 2.1×10−7 mol dm−3.  相似文献   

5.
The polarographic currents of lincomycin in the absence and the presence of persulfate are studied by linear potential scan polarography and cyclic voltammetry. The reduction wave of lincomycin in phosphate buffer is a catalytic hydrogen wave, which is the reduction of the proton combined with lincomycin in nature. When S2O82− is present, the atomic hydrogen as intermediate product from the reduction of the combined proton is oxidized by both S2O82− and its reduction intermediate, sulfate radical anion SO4, to regenerate the original proton, producing the parallel catalytic hydrogen wave. Based on the parallel catalytic hydrogen wave, a novel method for the determination of lincomycin is proposed. In 0.48 mol l−1 KH2PO4-Na2HPO4 (pH 7.4)-8.0×10−3 mol l−1 K2S2O8 supporting electrolyte, the peak potential of the parallel catalytic hydrogen wave is −1.82 V (vs. SCE). The second-order derivative peak current is rectilinear to the lincomycin concentration in the range of 8.5×10−8-9.0×10−5 mol l−1 and the detection limit is 4×10−8 mol l−1. The parallel catalytic hydrogen wave is three orders in magnitude higher than that of the corresponding catalytic hydrogen wave in analytical sensitivity. The proposed method is applied to the rapid determination of lincomycin hydrochloride in eye drops without previous separation.  相似文献   

6.
The polyamines, octyl-[2-(2-octylamino-ethylamino)-ethyl]-amine (L1) and octyl-{2-[2-(2-octylamino-ethylamino)-ethylamino]-ethyl}-amine (L2), have been used as anion ionophores in PVC-based membrane ion-selective electrodes. Different electrodes were prepared containing L1, or L2, and o-nitrophenyl octyl ether (NPOE) or bis(2-ethylhexyl)sebacate (DOS) as plasticizers. The response of the electrodes was tested in two different buffers, HEPES-KOH (pH 7) and MES-KOH (pH 5.6). Electrodes containing L1 and L2 with NPOE (E1 and E2, respectively) showed a Nernstian response for thiocyanate with a good response time. The detection limit, linear range and slope for electrode E1 were 3.8 × 10−6 mol dm−3, 1 × 10−5 to 1 × 10−1 mol dm−3 and −57.2 mV decade−1 at pH 5.6 and 4.47 × 10−6 mol dm−3, 1.95 × 10−5 to 1 × 10−1 mol dm−3 and −58.1 mV decade−1 at pH 7.0. For electrode E2 the detection limit, linear range and slope found were 2.63 × 10−6 mol dm−3, 7.94 × 10−6 to 1 × 10−1 mol dm−3 and −58.5 mV decade−1 at pH 5.6 and 1.23 × 10−5 mol dm−3, 7.95 × 10−5 to 1 × 10−1 mol dm−3 and −46.0 mV decade−1 at pH 7. In contrast, electrodes containing DOS as plasticizers gave only response at pH 5.6 (detection limit, linear range and slope at pH 5.6 were 3.16 × 10−5 mol dm−3, 1 × 10−4 to 1 × 10−1 mol dm−3 and −52.6 mV decade−1). Selectivity coefficients for different anions with respect to thiocyanate were calculated. The electrode E2 at pH 5.6 was also used for the determination of SCN by potentiometric titrations with Ag+ ions with good results. The electrode E2 was also used to determine concentrations of thiocyanate in biological samples.  相似文献   

7.
The electrochemistry of metronidazole, 1-(hydroxyethyl)-2-methyl-5-nitroimidazole, was investigated at a carbon fiber microdisk electrode in pH 9 Britton Robinson buffer. Under these conditions, the reduction of metronidazole is controlled by both mass transport to the microdisk and adsorption with an equilibrium constant of 4 × 103 mol−1 dm3 and a saturation coverage of 0.88 × 10−8 mol cm−2. The adsorption and accumulation of metronidazole on the surface of the carbon fiber allows its determination at low concentrations by square wave adsorptive stripping voltammetry. A detection limit for metronidazole of 5 × 10−7 mol dm−3 and a R.S.D. of 3.7% at 1 × 10−6 mol dm−3 (n = 4) were obtained with a two electrode system with no stirring during the accumulation step. Based on this method, a simple procedure for the determination of metronidazole in urine is described which requires no pre-treatment of the sample before analysis.  相似文献   

8.
A supported liquid and a poly(vinyl chloride) (PVC)-based membrane selective for dodecylsulfate (DS) ion are described. The active element is a membrane containing a dissolved ion association complex of DS with cetylpyridinium (CP+) cation. The supported liquid membrane electrode (acetophenone as solvent) showed a Nernstian response towards the DS anion over the concentration range of sodium dodecylsulfate (SDS) from 8.3×10−3 to 1.0×10−6 mol dm−3 at 25 °C. The proposed electrode also showed a super-Nernstian potential response (108±2 mV decade−1) at low concentrations (1.0×10−9 to 1.0×10−6 mol dm−3). Moreover, this electrode showed good selectivity and precision (R.S.D.?2.0%), and was usable within the pH range 4.0-6.8. The proposed electrode revealed a lower limit of detection of 6.3×10−7 mol dm−3 and improved selectivity in comparison with the some previously reported DS ion selective electrodes. The isothermal temperature coefficient of this electrode amounted to −0.001 V °C−1. The liquid membrane electrode may find application in the direct determination of SDS by the standard addition method at pH 5.0, and in the physicochemical studies of surfactant solutions.  相似文献   

9.
Huang W  Hu W  Song J 《Talanta》2003,61(3):411-416
A single-wall carbon nanotubes (SWNT)-Nafion film coated glassy carbon electrode (GCE) was described for the determination of 4-aminophenol. In pH 3.0 sodium citrate-HCl buffer, the oxidation peak current of 4-aminophenol increases greatly at the SWNT-Nafion film coated GCE in contrast to that at both bare GCE and Nafion-film coated GCE. Moreover, the oxidation peak potential shifts to more negative potential. All the experimental parameters were optimized for the determination of 4-aminophenol. The oxidation peak current is proportional to the concentration of 4-aminophenol over the range from 5×10−9 to 2×10−6 mol l−1. The detection limit is 8×10−10 mol l−1 at 4 min of accumulation. Using the proposed method, 4-aminophenol in water samples was determined.  相似文献   

10.
Two disk-like D-A type chromophores with multi-triphenylamine donors and hexaazatriphenylenes acceptors were synthesized and fully characterized by 1H and 13C NMR, elemental analysis and mass spectrometry. The effects of the hexaazatriphenylene on the optical and electrochemical properties and band gap of the chromophores were investigated. As the hexaazatriphenylene core fused with three thiophene rings, the band gaps of the compounds could be tuned from 1.65 eV to 1.15 eV. The π-π* absorption peak and charge-transfer absorption peak of the hexaazatriphenylene compounds were red shifted from visible spectrum region (393 and 530 nm) to near-infrared spectrum region (542 and 756 nm). In addition, due to an increase in the π electronic coupling between electron donor and electron acceptor, the extinction coefficient (charge-transfer absorption) of the hexaazatriphenylene compound decreases 85% from 3.4 × 104 mol−1 dm−3 cm−1 to 0.5 × 104 mol−1 dm−3 cm−1.  相似文献   

11.
The optimum conditions were established for the determination of the genotoxic substance 1-(4-bromophenyl)-3,3-dimethyltriazene by differential-pulse voltammetry at a hanging mercury drop electrode in the concentration range 1 × 10–4 to 1 × 10–7 mol dm–3. The sensitivity of the determination can be improved through adsorptive accumulation of the investigated substance on the surface of the hanging mercury drop electrode: differential pulse adsorptive stripping voltammetry can be used in the concentration range 1 × 10–7 to 2 × 10–10 mol dm–3. The relative standard deviation (for ten determinations at 2 × 10–10 mol dm–3) was 7.5%.  相似文献   

12.
An adsorptive stripping voltammetric method for determination of phenol at an electrochemically pretreated carbon-paste electrode has been developed. Solid paraffin was used as the binder of the carbon-paste electrode. The carbon-paste electrode was pretreated in the solution of 0.001 mol L−1NaOH by holding it at +1.8 V (versus an Ag/AgCl electrode) for 5 min. On the pretreated electrode, the adsorption of phenol was greatly enhanced. Phenol was accumulated in NH3–NH4Cl (pH 9.25) medium at the potential of +0.1 V (versus Ag/AgCl electrode) for a certain time and then determined by second order differential anodic stripping voltammetry. An oxidative peak was observed at about +0.66 V. The relationship between second order peak current and phenol concentration was linear in the range of 2.5 × 10−7–5.0 × 10−6mol L−1phenol, and the detection limit was 5.0 × 10−8mol L−1. The method has been applied to the determination of phenol in tap water and waste water. The relative standard deviation (six determinations) was less than 3.5%.  相似文献   

13.
An electrically conductive polymer, poly(o-phenylenediamine) (PoPD), is soluble in dimethylsulfoxide (DMSO) without any pretreatment. Cyclic voltammograms of dissolved PoPD were measured in DMSO solutions containing halogenide ions and two reversible redox peak currents were evident. The redox potential shifted with the concentration of the dissolved halogenide ion. The relationship between the potential shift and the concentration determined the relative association constant of PoPD for four halogenide ions: 104 mol−1 dm−3 for F; 32 mol−1 dm−3 for Cl; 29 mol−1 dm−3 for Br and 9 mol−1 dm−3 for I.  相似文献   

14.
The aggregation of dodecyltrimethylammonium hydroxide (DTAOH) aqueous solutions has been studied by several methods. It is stepwise and four critical points were found. AtC T=(2.51±0.10)×10–4 mol · dm–3 the surface excess becomes zero, atC T=(1.300±0.041)×10–3 mol · dm–3 small aggregates from, which grow with concentration. AtC T=(1.108±0.010)×10–2 mol · dm–3 true micelles form (CMC) and at (3.02±0.28)×10–2 mol · dm–3 the structure of micelles probably changes affecting their properties. The DTAOH micelles are highly ionized (=0.8) at the CMC, and decreases to reach very small values when the total concentration increases.  相似文献   

15.
A sensitive square‐wave voltammetry method was developed to determine cholecalciferol (vitamin D3) in pharmaceutical products at boron‐doped diamond electrode as a working electrode. Vitamin D3 provided a well‐defined voltammetric peak at around +1.00 V (vs. Ag/AgCl, 3.5 mol dm?3) in 0.02 mol dm?3 Britton‐Robinson buffer pH 5.0 prepared in 50 % ethanol. The influence of various factors such as type and pH of the supporting electrolyte, scan rate and square‐wave parameters were studied and optimized. Under optimum conditions, the oxidation peak current increased linearly with the concentration of vitamin D3 over the range of 2 to 200 μmol dm?3. The calculated limit of detection and limit of quantitation were 0.17 μmol dm?3 and 0.51 μmol dm?3, respectively. The boron‐doped diamond electrode exhibited specific recognition capability for cholecalciferol amongst possible interferences, and the determination of vitamin D3 was possible in samples such as commercial pharmaceutical products without complicated sample pretreatments.  相似文献   

16.
Yi L  Zhao H  Chen S  Jin L  Zheng D  Wu Z 《Talanta》2003,61(3):403-409
A simple, rapid and sensitive method for the determination of two fluoquinolones (FQs), enoxacin (ENX) and ofloxacin (OFLX) is described by using flow injection analysis with potassium permanganate-sodium sulfite chemiluminescence detection. The calibration graphs for ENX and OFLX are linear in the range of 8.0×10−10-1.0×10−5 and 1.0×10−9-1.0×10−6 mol l−1, respectively. The 3σ limits of detection are 2.4×10−10 mol l−1 for ENX and 5.6×10−10 mol l−1 for OFLX. The method is applied satisfactorily to the determination of the two FQs in dosage form and urine sample. The possible mechanism is also proposed.  相似文献   

17.
The determination of cadmium using a carbon paste electrode modified with organofunctionalized amorphous silica with 2-benzothiazolethiol was investigated. The Cd(II) oxidation peak was observed around −0.80 V (vs. SCE) in phosphate buffer (pH 4.0) in differential pulse anodic stripping voltammetry. The best results were obtained under the following optimized conditions: 1 min accumulation time, 50 mV pulse amplitude, 20 mV s−1 scan rate in phosphate buffer pH 4.0. Using such parameters a linear dynamic range from 5.6×10−7 to 3.5×10−5 mol l−1 Cd(II) was observed with a sensitivity of 2.83 μA mol−1 l, limit of detection 1.0×10−7 mol l−1. Cd(II) spiked in a natural water sample was determined with 99% mean recovery at 10−7 mol l−1 level. Interference were also evaluated.  相似文献   

18.
The direct determination of aluminium in aqueous solutions by differential pulse polarography is described. If the pH is carefully controlled to 4.00 ± 0.01, there is a linear relationship between the peak height of the polarographic wave and the aluminium concentration up to 2.5 × 10-5 mol dm-3. The coefficient of variation is about 4% at the 10-5 mol dm-3 level. With increasing aluminium concentrations, the relationship ceases to be linear, and above 9 × 10-5 mol dm-3, the peak splits, probably because of hydrolysis and polymerisation. Na+, NH4+, Mg2+ and Ca2+ interfere at levels 100 times greater than that of the aluminium whereas Fe2+, Fe3+, Cu2+, Zn2+, Ni2+, NO3-, ClO4-, Cl- and SO42- do not interfere.  相似文献   

19.
Linear-sweep polarography of tellurium in sulfuric acid solution containing methylene blue produces a wave at −0.82 V (vs SCE). In a cathodic sweep, the derivative peak current is directly proportional to the concentration of tellurium over the range 4 × 10−9to 1 × 10−7g/ml, and the detection limit is 2 × 10−9g/ml. The polarographic wave is an adsorptive catalytic hydrogen wave. This method has been applied to the determination of trace amounts of tellurium in smog dust and wheat flour, with satisfactory results.  相似文献   

20.
A method is described for the determination of estrogens (estradiol, estrone and estriol) by stripping voltammetry. These estrogens yield one well-defined oxidation peak at the Nafion-modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide (CTAB). The peak current is proportional to the concentration of estradiol in the range from 2.5×10−8 to 1.5×10−6 mol/l, and the detection limit is 1×10−9 mol/l after accumulation of 6 min. The total amounts of estrogens in the blood serums were determined using the voltammetric method, and the average recovery was 106.04%. The mechanism of the oxidation of estradiol was investigated by electrochemical techniques and UV spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号